Amplitude death: The cessation of oscillations in coupled nonlinear dynamical systems
Garima Saxena, Nirmal Punetha, Awadhesh Prasad, and Ram Ramaswamy

Citation: AIP Conference Proceedings 1582, 158 (2014); doi: 10.1063/1.4865354

View online: http://dx.doi.org/10.1063/1.4865354

View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1582?ver=pdfcov
Published by the AIP Publishing



http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://scitation.aip.org/search?value1=Garima+Saxena&option1=author
http://scitation.aip.org/search?value1=Nirmal+Punetha&option1=author
http://scitation.aip.org/search?value1=Awadhesh+Prasad&option1=author
http://scitation.aip.org/search?value1=Ram+Ramaswamy&option1=author
http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4865354
http://scitation.aip.org/content/aip/proceeding/aipcp/1582?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov

Amplitude Death: The cessation of oscillations in
coupled nonlinear dynamical systems

Garima Saxena*, Nirmal Punetha’, Awadhesh Prasad* and Ram
Ramaswamy™*

*Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
tSchool of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
**University of Hyderabad, Hyderabad 500046, India

Abstract. Here we extend a recent review (Physics Reports 521, 205 (2012)) of amplitude death,
namely the suppression of oscillations due to the coupling interactions between nonlinear dynamical
systems. This is an important emergent phenomenon that is operative under a variety of scenarios.
We summarize results of recent studies that have significantly added to our understanding of the
mechanisms that underlie the process, and also discuss the phase—flip transition, a characteristic and
unusual effect that occurs in the transient dynamics as the oscillations die out.
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Nonlinear systems can show a range of complex dynamics depending on the nature of
the equations of motion. When two or more systems are coupled, then there is frequently
newer, emergent behavior that depends on the manner in which the systems interact.
Synchronization is one such phenomenon, but depending upon the manner in which
the coupling is organized, the collective dynamics can be more complex [1, 2]. An
unusual and unexpected consequence of the coupling is to induce simplicity: in addition
to synchrony [4], there can be the suppression of chaos and appearance of periodicity
[3], and amplitude death (AD), namely the loss of any oscillatory dynamics when the
dynamics is driven to a fixed point [5].

In the past few decades, AD has been the subject of extensive study due to potential
applications in stabilizing systems to the steady state. Oscillation quenching is often
desired as a control mechanism in technology: for suppressing fluctuations in the power
output of lasers [6], in thermo—optical oscillators for implementing safety measures [7],
in coupled self excited elastic beans [8], or in electrical engineering to stabilize DC grids
with constant power loads [9] for instance, and also for medical purposes like treating
neuronal disorders [10, 11, 12]. In other applications, AD has also been proposed as an
underlying mechanism for auditory transduction [13] and is also presumed to play an
important role in climatology, where the large scale oceanic and atmospheric anomalies
are found to be correlated with the zonal coupling of atmospheres of the respective ocean
basins [14].

A recent review [5] has focussed on AD in different fields. The characteristics of
different coupling strategies and scenarios that lead to AD and its occurrence in networks
of coupled oscillators and in various experimental situations has been discussed in detail.
We summarize these briefly here. Starting with the work by Aronson et al.[15] who
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showed that mismatched units, when coupled lead to AD, several other scenarios have
been proposed. Time—delay coupling [16, 17] and conjugate coupling [18] both cause
identical coupled systems to show AD.

In configurations where the parameters of individual systems are not accessible, a
strategy that has been proposed is the so—called dynamic coupling [19], where the cou-
pling variable itself has nontrivial dynamics in the absence of interaction. This coupling
scheme has been explored in a variety of different system configurations [20] and been
shown to be a robust mechanism to cause AD. All these configurations work with lin-
ear coupling, and by taking the coupling itself to be nonlinear, one can, in addition,
stabilize a targeted or “designed” steady state [21]. AD can also be achieved by cou-
pling a linear and nonlinear system [22], in a configuration termed linear augmentation.
When the coupling involves transmission delay, AD follows as a natural consequence
[16, 17]. More realistic situations are modeled by including delays that are not fixed but
are distributed in some manner and this is shown to enhance the region of stability in the
parameter space [23, 24].

Recently, Konishi and coworkers [25] have shown that AD can be realized more
efficiently when the delay is itself time—varying. Other schemes such as environmental
coupling [26], mean—field diffusion [27], gradient coupling [28], partial time varying
delay [29] and indirect coupling [30] for stabilizing AD have also been proposed. In this
review, in the next section we discuss these recently proposed scenarios for AD, namely
time—varying delays, environmental coupling and other types of interactions. The phase-
flip transition is discussed in Section 2, and AD in coupled Hamiltonian systems in
Section 3. We conclude with a brief summary in Section 4.

1. SCENARIOS

For consistency we discuss the various scenarios for AD in the context of coupled
Landau—Stuart limit cycle oscillators. The equation of motion for a single Landau—Stuart
oscillator is

Z(t) = (A+io+|2(t)|*)Z(t) (1)

where, Z = x + iy is a complex variable, A determines the degree of instability of the
fixed point Z* = 0 and o is the natural frequency of oscillations.

1.1. Variable time-delay coupling

It is well known that AD can occur when identical systems are coupled with time—
delay. In such cases there are two additional parameters apart from those of the indi-
vidual system, namely the coupling strength € and the time delay 7. Depending upon
the system properties, AD occurs in regions in parameter space (&, 7); these appear as
distinct ‘death islands’ [16], so it would seem that AD can be realized practically for
only a limited range of 7. In practical situations, short delay times are not easily imple-
mented, and this can pose a problem. A recent approach to addressing this limitation
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has been to make the time—delay itself time dependent, and this is easily implemented
in experiments [31].
Consider a pair of Landau—Stuart oscillators,

Z1(t) = (A+io+|Z@1)]?)

1)Z1(2) +ui (1)
(1) = (A+io+|Z(1)]?)

Z1(t)+u
Zy(t) +ua(t) (2)
where the coupling u;(¢) is

ui () = €[Z,(t — (1)) — Z12(1)]-

The time dependent time—delay 7(z) > 0 in the coupling signal can be chosen such that
it varies periodically around an average, T,

T(t) :=To+ 0 f (),
and Konishi er al. [25] took f () to be a sawtooth function,

2
fx) = +¥x —1—4m if xe€ [2mm,(2m+1)7)

2
—Ex—|—3+4m if x€[(2m+1)m,2(m+ 1)7]

for m =0, 1, 2.... Note that § € [0, 7] and Q > 0 are the amplitude and frequency of
variation.

In numerical simulations the parameters are taken as A=0.5, ® = w and 6 = 0.3 in
[25]. The variation of 7(¢) is shown in Fig. 1(a) and the dynamics of the coupled system
as a function of the parameters (&, 7) in Fig. 1(b). The dotted region corresponds to AD
where the fixed point Z; = 0 is stabilized and elsewhere the dynamics is periodic. When
the amplitude 6 is increased, the AD region in parameter space increases correspond-
ingly. Konishi et al.[25] derive the analytic conditions for AD for arbitrary time—delay
values in the above system to obtain the result that when § = 7/@ where ® << Q and
U < o(2+m)/4x, the AD region becomes unbounded. Thus the use of time—dependent
delay provides a systematic procedure for designing AD by tuning appropriate system
parameters.

1.2. Environmental Coupling

When the interaction between two systems is mediated through an external agency,
namely an environmental effect [26], a number of interesting phenomena arise. Such
indirect or “relay” coupling is quite common: genetic oscillators, for instance, are
typically coupled via an external agency such as the cell membrane through which
chemical diffusion occurs. Examples can be drawn from a number of fields that ranging
from chemical oscillators to atomic ensembles where coupling is implemented by the
surrounding media [26].
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FIGURE 1. (a) The variation of time-delay 7(¢) as a function of time, for 7y = 1, Eq.(3), (b) The
schematic phase diagram in parameter space (€ — 7y) for 6 = 0.3. AD occurs in the shaded region.

One model for the dynamics of a system that is coupled through the environment is
given by the equations of motion

X = f(X)+Bs
s = g(s)+h(B,X)

where X € R™ are the variables of the dynamical system and s € R! represents the action
of the environment. The vector 8 with elements O or 1 selects components of X that are
affected by the environment. It has been shown by Amritkar and coworkers [26] that this
form of environmental coupling can induce AD in the coupled units that also interact
with one another directly so as be synchronized in—phase. Environmental coupling in
effect frustrates the system by giving each unit an anti—phase synchronizing tendency.
This forces the synchronized system to cease oscillating when both couplings (one
causing in—phase synchronization and second inducing anti—phase synchronization) are
operational and there is a competition between the two tendencies, leading to AD. This
mechanism does not stabilize the unstable fixed point of the uncoupled systems; the new
interactions generate novel steady states so that this form of behavior is more properly
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FIGURE 2. (a) In-phase synchronization for (&;,&) = (0.2,0) and (b) anti—phase synchronization
when (€1,&) = (0,0.2). (¢) A schematic phase diagram in parameter space (€;,&). AD occurs in the
shaded region, outside which the dynamics is oscillatory.

termed oscillation death. We illustrate this in the coupled Landau—Stuart system

21(1) = (14io+|Zi(0))Zi(1)+ & [Za(t) — Z1 (1)) + €25
Zz(l‘) = (1—|—ia)—|—|Z2(t)|2)Z2(t)+81[Z1(t)—Zz(l‘)]—f—é‘zs 3)

s(t) = —s—%Z(xi—f—yi);

where B is a vector of length 4 with all elements taken to be unity. &, is the environmental
coupling strength, €; that of the direct coupling, and the frequency  is taken here to be
10.

Fig. 2a corresponds to the case when the environment is switched off, namely & =0
and the oscillations synchronize. Similarly, when only environment coupling is present,
namely € = 0, the oscillators are in anti—phase synchronization, Fig. 2b. When both dif-
fusive and environmental coupling are switched on the oscillators are driven to AD, and
the region where such behavior is shown as a function of the two coupling parameters
€1, & in Fig. 2(c).

While here the environment has been modeled as an over-damped oscillator that is
kept active through feedback from the dynamical system(s) [32] AD can occur even
when the environment has other intrinsic dynamics. Further, such stabilization also
works in networks of nonlinear oscillators [33].
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FIGURE 3. The schematic phase diagram in parameter space (Q,€). AD occurs in the shaded region.

1.3. Other Strategies

We summarize some recent studies that have proposed methods causing AD that are
variants or extensions of the scenarios discussed in Ref. [5].

Mean Field Diffusion [27] which induces AD in identical systems coupled by simi-
lar variables. The studies so far showed that AD in such a configuration can occur only
under parameter mismatch [15]. Mean field interaction releases this constraint by intro-
ducing a control parameter in the coupling and tuning it within the optimal range. It is
a modification to the widely studied diffusive coupling [34]. Though the name of the
coupling suggests its existence in networks, it is also true for the limiting case of two
coupled systems.

Consider N coupled Landau—Stuart oscillators,

Zi{t) = (u+io+|Z)Z1t)) +€(0Z - Z) )
_ 1 Y
Z = N;Zi

with Q the mean—field control parameter that determines the extent of feedback. In the
limit Q — 0 when the oscillators decouple, and Q — 1, that maximizes the interaction,
there is no AD but for some intermediate Q there can be oscillation death. For Q < 1 the
effect of mean field is reduced, causing the limit cycles to pull each other towards the
steady state; this can be seen in the phase diagram plotted in Fig. 3 for N=2. AD also
occurs when Q is made time dependent [35].

A scenario that has been studied recently highlights the significance of asymmetrical
coupling. Asymmetry can arise due to different coupling strengths by which systems
interact with each other, reflected in the different € values for the subsystems. It induces
AD in identical coupled systems over a substantially large regime in coupling parameter
space [36]. In the presence of delay it further enhances the region in which AD occurs
[37]. Asymmetry also arises when attractive (¢ > 0) and repulsive (¢ < 0) coupling
are together present [38]. This scenario shows rich dynamical behavior along with the
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occurrence of AD.

Other studies of AD have examined the combined effect of parameter mismatch
and delay [39], designing AD by single [40] and multiple delayed connections [41],
analytical study of AD under distributed delay [42, 43], non-autonomous dynamics of
Van der Pol oscillator in AD regime [44], coexistence of AD and synchronous oscillatory
behavior in time delay systems [45] and controlling delay induced AD by coupling phase
[46].

Very recently Sekikawa and coworkers [47] have explained the sudden transition from
chaotic motion to the state of AD, a kind of transition observed earlier [48, 24, 32] too.
The group has done the analysis for Bonhoeffer van der Pol oscillator and have found
that such a direct transition to AD is a result of saddle-node bifurcation.

Study on AD has also been extended to networks wherein the works include exploring
the effect of spatial distributions on AD [49], effect of gradient coupling on AD in
network [28], insensitive dependence of AD on network structures [50] and AD in
networks of delay coupled delay oscillators [51]. An important scenario which observes
AD is the reactive coupling [52]. It increases the critical coupling strength for onset of
AD but when present alongside the meanfield interaction it supports the occurrence of
AD by making the number of dead oscillators increase gradually in the network.

2. THE PHASE-FLIP TRANSITION

An interesting phenomenon that is frequently observed in coupled nonlinear systems
within the regime of synchronization is the phase—flip transition [48, 53, 54, 55, 56,
57, 58, 59, 60, 61, 62]. The relative phases of oscillations of the sub-systems change
abruptly, typically by 7, when a parameter such as the time—delay is varied. This phase
change is accompanied by a change in frequency, and the transition is also quite general
in the sense that it is observed in limit cycle as well as in chaotic oscillators, and
furthermore the dynamics in the synchronized state can be periodic, quasiperiodic, or
chaotic [53, 54].

While this is not a bifurcation since the largest Lyapunov exponent does not vanish,
there is nevertheless an interesting feature of this transition, namely an (avoided) cross-
ing of Lyapunov exponents [55, 59]. When this happens within the AD region all the
exponents are strictly negative, and a detailed analysis can be carried out. Note however,
that the dynamics, such as it is, is transient since the systems eventually settle onto fixed
points. Thus the phase—flip here refers to the fact that there is a transition in the decaying
dynamics of both the subsystems from being in phase to being out of phase.

2.1. Symmetric delay

Consider the specific example of identical Landau—Stuart oscillators coupled with
delayed interactions. The equation of motion is given by, in usual notation,

Zi=(1+io—|Z) Zi+e[(Zj(t—1) = Z)]: i,j=1,2; i# ],

and we have taken the amplitude to be unity. Transforming into polar coordinates:
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FIGURE 4. (Colour online) (a) And (b) show respectively the frequency jump and the crossings of
the Lyapunov exponents for Landau-Stuart oscillators in AD regime. The insets in subfigure (a) are the
transient dynamics of x; and x, (x variables of two oscillators) at two different delay values— before
(t = 0.15) and after (7 = 0.16) the phase flip. In (b), the Lyapunov exponents are plotted by solid red
(A1), dashed green (A,), solid magenta (A3) and dashed blue (44) lines. (¢) and (d) show the variation of
real and imaginary parts of eigenvalues of the system (Eq.(5)) with time delay. In (c), the real parts of
the complex conjugate eigenvalue pair , 0 (green circles and blue triangles respectively) match with
the Lyapunov exponents (solid lines). The corresponding imaginary parts f3;, 8, are plotted in (d) with
numerically calculated frequencies (solid line). The system parameters are A = 1, @ = 10.0,& = 2.0.

Ria=/x3,+y%,; 0 =tan"! (y;2/x1 ) and assuming that the amplitudes vary slowly,
the phase dynamics of the system is given by:

Q'i:a)—kesin[ej(t—f)—@i(lﬂ; Lj=12 i#]. )

In the synchronized region there is a common frequency of oscillation which we denote
Q (in AD, this is the frequency of damped oscillations). If the phase difference between
the subsystems is A¢, it can easily be shown [55] that this can either be zero or 7, and
the corresponding frequencies of oscillation satisfy the transcendental equations

Q = o—e¢sin(Q7), for in-phase solutions (6)
Q = w+esin(Qr), for anti-phase solutions (7)

At the parameter value where the phase—flip occurs there is a sudden change in syn-
chronized frequency, Fig. 4(a), while in the spectrum of Lyapunov exponents there is an
avoided crossing between the two largest exponents and the next two, Fig. 4(b). (Since
Lyapunov exponents are ordered by rank, they cannot in principle cross one other.)

In the neighborhood of the transition, the Jacobian matrix at the fixed point (here the
origin) has complex eigenvalues, and since this is a regime of AD, the real parts yield
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the Lyapunov spectrum. Linearizing Eq. (5) around the origin gives the characteristic
equation
Det(J—AI) =0, 8)

where I is the identity matrix and the J is the Jacobian. Assuming the perturbation varies
as ¢, this yields

A2 =2(a+io)A + (a* — 0+ i2aw) — e T =0 9)

where a = 1 — €. Substituting A = a + i3 gives the pair of equations

o’ —B%—2(a0 — Bw) +a* — ©* — ?e 2% cos2BT =0 } (10)

208 —2(0w +af) +2am + 2e > sin2f1t =0

which can be solved numerically to obtain o and f3.

As can be seen in Fig. 4(c)-(d), the real parts of the eigenvalues give the Lyapunov ex-
ponents, and the imaginary part of the largest eigenvalue is the frequency of the damped
oscillation for the coupled system. The eigenvalues come in complex conjugate pairs,
o +ify and o +ifs, resulting in the spectrum of exponents having the degeneracies
seen in Fig. 4(c). When the exponents cross, the imaginary part of the largest eigenvalue
pair exchange their imaginary parts (B, B). This results in the phase and the frequency
jump that are observed at the phase flip transition. Similar behavior near the transition is
found also for coupled chaotic oscillators in AD region [55].

2.2. Asymmetric delay

Phase-flip is also observed in oscillators coupled by asymmetric delays [59], the case
when the speed of information transmission is direction dependent. Consider the system
of Landau—Stuart oscillators

Zi=(+io—|Z|*)Zi+eZi(t—1)—Z); i,j=1,2; i# ], (11)

with 7] # 1. Proceeding as before, the synchronized frequencies in this case can be
shown to be given by the zeros of the functions

F£(Q) = 0 —QFKsin(Q7T) (12)

where T = (1) + 72)/2 is the average delay, and the phase difference is given by [59]

QAT
A¢ =—— if cosQT>0
(13)
QAT .
=1 — —— otherwise.

Although the phase difference differs from zero or 7 and depends upon the difference
of the individual delays, AT = (1] — 7»), the phase jump in this case is also accompanied
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by a discontinuity in synchronized frequencies as shown in Fig. 5 where Q and A
computed numerically as a function of 7] and 7, are depicted. A line of phase difference
discontinuity as well as the frequency jump can be seen.

The dependence of Q on the arithmetic mean of the asymmetric delays has the
interesting consequence that systems with the same average delay have identical the
frequency responses. The eigenvalues of the Jacobian matrix at the fixed point also have

the same property,
l+iw—¢ e 0
- 14
J ( ge A0 1—|—ia)—8) 14

since from Eq.(14) one obtains the characteristic equations:

A2 =2(a+io)A + (a® — 0* + 2aw) — 2 TR = 0 (15)
= A2 =2(a+i0)A + (a* — 0* +i2aw) — e D = 0 (16)

where a = (1 — €). Since Eq. (16) is a function of the average delay and does not sepa-
rately depend upon the individual delays, the frequencies, eigenvalues and consequently
the Lyapunov exponents in the AD region must be equal for systems with the same
average delays, and the asymmetric delay case is exactly equivalent to a symmetric sys-
tem with the same average delay [59]. Here also there is an avoided crossing at the flip
transition, with the exchange of imaginary parts of eigenvalue pairs [59].

This characteristic of the phase flip transition, namely the avoided crossing of Lya-
punov exponents along with the exchange of imaginary parts of the complex—conjugate
eigenvalue pairs at the point, causing frequency and phase jumps have been observed in
various periodic and chaotic systems [55, 59]. Eigenvalue analysis within the AD regime
is possible since all exponents are negative. When the dynamics is oscillatory, (numer-
ical) experimental results indicate that there are crossings in the Lyapunov exponents,
but the analysis for periodic or chaotic states is nontrivial. It seems likely, however that

FIGURE 5. (Colour online) The variation of the numerically calculated synchronized frequency Q as
a function of delays 7; and 7. 7, = (n/N)7; where N = 500 is the discretization taken in the simulation
(left). The variation of the phase difference (A¢) as a function of delays 7; and 7, (right). System
parameters are fixed as @ = 10,€ = 2.0.
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the phase—flip would have a similar mechanism in these cases [53, 54, 55, 57, 59, 60]
also. It would be interesting to extend the analysis that has been possible for AD to
other dynamical states since the phase—flip transition is frequently seen in the dynamics
of the systems coupled with or without delay—electronic circuits [56], neurons [57],
electrochemical cells [60], plastic bottle oscillators [56].

3. COUPLED HAMILTONIAN SYSTEMS

The possibility of analogous phenomena occurring in weakly dissipative systems has
been explored recently by examining Hamiltonian dynamical systems with velocity cou-
pling [62]. This form of interaction makes the systems dissipative creating the possibility
for the occurrence of AD.

Consider a pair of simple harmonic oscillators,

X+ 0f = (0 (t — 1) —x1) (17)
X+ 03 = (X1 (1 —T) —x2)

x1 2 and xj > are the positions and velocities of the two oscillators and @; > their oscilla-
tion frequencies. Stability analysis around the fixed point (xj 2,%;2) = (0,0) shows that
occurrence of AD is independent of the coupling strength, €. It follows from here that as
soon as the delay is switched on AD occurs irrespective of the value of coupling strength,
as can be seen in the largest Lyapunov exponent, 4; (see Fig.(6a)). Note also that A} — 0
at certain critical delays which are points of marginal stability, when the real part of the
eigenvalues of Jacobian is zero. These points can be estimated to be 7, = nT /2; here the
coupling effectively vanishes, and the systems decouple showing conservative dynamics
again.

The region of AD is again seen in the spectrum of Lyapunov exponents, Fig. 6a and
here too transients show the phase—flip transition. The phase difference between the os-
cillators is plotted in Fig.(6b). In addition, since the uncoupled systems are Hamiltonian
in nature, one can analyze the rate of energy decay [63]. The energy of each oscillator is

1
Eip =5 (xin® +Q%,) (18)

where € is the common frequency of oscillation. From the decaying maxima of energy
EY", (m labels the successive maxima) one computes

el = <log]E{”’2:' —E")p
from which one can obtain
Eia =(e12) (19)
where ( ) indicates an averaging over initial conditions. & quantifies the rate of energy

dissipation and a plot of &; as function of the delay in the AD region is shown in Fig. 6¢:
energy dissipates faster prior to the flip transition, and slower thereafter.
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FIGURE 6. The variation of (a) first four lyapunov exponents (A;), (b) phase difference (A¢) between
the coupled oscillator, (c) energy dissipation rate (&;) and (d) synchronized oscillation frequency () as
function of time delay 7.

4. SUMMARY

We have presented detailed numerical as well as analytical discussion of amplitude
death in coupled nonlinear systems. We have considered some special configurations
e.g. time—varying delay, environmental coupling and mean field coupling. Time-varying
delays have advantages over fixed and distributed delay and are more realistic in practi-
cal applications. We have also considered environmental coupling, and we believe that
this form of interaction is ubiquitous in a wide range of systems, particularly in biol-
ogy. Such coupling leads to a large regime of AD. With feedback from a mean field,
AD becomes possible in systems coupled by identical variables even in the absence of
time delay. We also considered coupled Hamiltonian systems with time—delay coupling
leading to AD.

Both in—phase and out—of—phase dynamics is known to be stabilized in synchronous
systems [64] and a transition between these is known in a variety of situations [65]. The
phase—flip transition can be analyzed in details in the regime of AD, both for the case of
symmetric delays as well as when the delay is direction dependent.

Amplitude death can be a crucial and desired feature in a variety of fields, and thus
mechanisms for achieving AD can find application in different areas. This paper extends
our recent review [5] wherein the important coupling schemes and scenarios that lead
to oscillation death were discussed. The ability to obtain a specific fixed point, namely
the process of targeted amplitude death is important from an engineering point of view.
Finally, this analysis can also be instructive in achieving the opposite objective, namely
the avoidance of AD. Taken together, these studies are therefore important in the context
of controlling the dynamics of nonlinear systems.
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