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Abstract 

We study three models of driven sandpile-type automata in the presence of quenched random 
defects. When the dynamics is conservative, all these models, termed the random sites (A), 
random bonds (B), and random slopes (C), self-organize into a critical state. For model C the 
concentration-dependent exponents are nonuniversal. In the case of nonconservative defects, the 
asymptotic state is subcritical. Possible defect-mediated nonequilibrium phase transitions are also 
discussed. 

1. Introduction 

Self-organized criticality (SOC) [1] is a dynamic phenomenon which occurs in 

certain dissipative systems with large numbers of degrees of freedom. Such a system, 
when slowly driven into its metastable state, self-organizes in a state with long-range 
correlations, similar to the critical state at a second-order phase transition. 

In conventional criticality, quenched disorder can be a relevant perturbation in the 
vicinity of the critical point. It is therefore natural to ask how the SOC state responds 
to similar perturbations. One might expect that self-organizing systems are more robust 

against random perturbations, since the critical state is an attractor of the dynamics, 
although the universality class may change in presence of disorder. 

We explore this question in the present work, where we demonstrate, using numerical 
simulations on simple models of self-organizing cellular automata with frozen random 
defects, the conditions for a system to self-organize, and determine the universality class 
of the critical behavior. Disorder-mediated phase transitions between different types of  
metastable states are also discussed. 

We study three kinds of random defects which locally affect the rules of  relaxation in 
a manner analogous to the random site, random bond, and random field defects in spin 
models displaying conventional critical phenomena. All these models are based on the 
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Table 1 
Critical exponents and mass-to-scale ratio in 2D directed models with defects 

189 

Model D II 0 "r cr z ~b i z Zn Dn Remark 

A 3/2 1/2 1/3 1/2 1 1/2 1 1/3 3/2 universal 
B 1.62 1.04 0.65 1.04 1 none 1.006 0.466 1.997 universal 
C 1.49 0.57 0.38 0.54 1.002 none 0.978 0.366 1.54 nonuniversal 

directed abelian 2-dimensional critical height model (toppling if h ( i , j )  >_ hc) which is 

exactly solvable in the absence of defects [2], in which the dynamic rules are locally 
modified at a fraction c of "defect" sites. In model A, holes of infinite depth are placed 
at random sites. In model B there are two variables h l ( i , j )  and h 2 ( i , j )  associated 
with each site ( i , j ) .  These are coupled at random sites (details are given in Section 

3 below), in a manner so as to lead to a multiplicity of metastable states, as in the 

case of spin-glasses and other frustrated systems. In model C, frozen-in local slopes are 
introduced by preventing relaxation through the height instability at defect sites, and 

instead applying a critical slope toppling rule at all sites with slopes t r ( i , j )  >_ trc. In 
this case, regions with local slopes c r ( i , j )  ~ trc are established, while the rest of the 

system relaxes according to the critical height rule (the critical height hc is chosen such 
that hc <¢rc) .  In all three cases the ratio between the number of particles leaving one 

site and the number appearing at its neighbors is not uniform at defect sites. 
The numerical results presented here are from simulations on lattices (with periodic 

boundary conditions in the transverse direction) of size 12 < L < 384 for time steps 
(see below) up to 1 x 106. A lattice with frozen-in defects is prepared and kept fixed 

for the entire number of time steps, and then a new configuration is prepared; results 

are then averaged over the total number of configurations. In each case, the system was 

driven by randomly adding particles to sites at the top (first row), h( 1 , j )  --~ h( 1 , j )  + 1. 

2. Subcriticality: random-site model (A) 

The dynamic height variable h(i,  j ) ,  associated with each lattice site (i, j )  on a square 
lattice, is updated according to the rules of the critical height model: if h (i, j )  exceeds 
a critical value hc, then the site is unstable and relaxes according to 

h ( i , j ) - - - ~ h ( i , j ) - 2 ,  h ( i + l , j + ) - - ~ h ( i + l , j ± ) + l ,  (1) 

where (i + 1, j ± )  are the two neighboring downstream sites. This rule applies to all 
sites except for a fraction c of randomly distributed defect sites, at which infinitely 
deep holes are placed. Thus two grains are lost each time an avalanche hits a defect, 
rendering the dynamic process nonconservative. (Similar nonconservative models have 
been considered earlier [3] ). For c = 0 the critical exponents are listed in Table 1. 
An annealed version of defects of the above type was studied numerically in Ref. [4], 
where it was shown that the system self-organizes into a subcritical state. The probability 
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Fig. 1. Time average of the number of  topplings (n(l)) vs. distance l from the top of  pile for various 
concentrations of defects c. 

distributions of duration P ( t ,  c) and size D ( s , c )  were found to fulfill the following 

scaling forms: 

P ( t , c )  = t - " 7 9 ( t / ( t ( c ) ) ,  D ( s , c )  = s - * D ( s / ( s ( c ) ) ,  (2) 

where the correlation lengths ~ t ( C )  r,~ C -I"t, and gs(C) ~ c -gs for time and spatial 

correlations, respectively, diverge in the limit c ~ 0, with/~t = 1 and/Zs = 1.5 [4,5]. 
The scaling functions defined in Eq. (2) were calculated numerically in Ref. [4]. With 

the dynamical rules (1) there are no recurrences in the avalanche dynamics and thus 
both annealed and quenched (frozen) impurities lead to the same universal scaling 
properties. In Fig. 1 we plot (n( l ) ) ,  the average number of particles relaxed I up 
to distance l (measured from the top of the pile) for various values of the defect 
concentration: 

In the absence of defects (n( l ) )  is proportional to the average number of toppled sites 
(s(l))  and thus exhibits a power-law behavior 

( n ( l ) )  N t", ( 3 )  

1 The number of particles relaxed up to distance l is the total number of particles that take part in the 
relaxation processes from the top of pile up to the lth row. For lattices with defects, this quantity need not be 
the same as the total number of  toppled sites. 
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Fig. 2. Outflow current distribution in the absence of defects for system sizes L = 24, 48, 96, 192, and 384 
(left), and the corresponding finite-size scaling plot (right). 

with/x = 1 (cf. the top curve in Fig. 1). For finite concentration of  defects c, the curve 

flattens, and the scaling region with slope/x decreases with increasing c, corresponding 

to the decreasing correlation length in the system. At a critical concentration c = c* = 

0.295 = 1 - Pd, the directed-percolation threshold [6] ,  it is no longer possible to have 

a lattice spanning cluster [4] .  

For sandpiles without defects, the fluxes into and out of  the lattice are equal - the 

distribution G(J, L) of  the current which flows over the rim of  the system is shown in 

Fig. 2 for c = 0.0 and various systems sizes L. As expected for a self-organized critical 

state, the outflow current distribution exhibits scale invariance [7] ,  i.e. 

G( J, L) = L-t~G( J/L¢). (4) 

The finite-size scaling fit, also shown in Fig. 2, has the exponents/3 = 1 and ¢ = 0.5. 

With defects, the outflow current diminishes with increasing concentration of  defects, 

eventually vanishing at c = c* (see Section 5). There is no apparent scaling form of 

G(J,c). 

3. Universal criticality: random-bond model (B) 

In order to simulate effects of  random bonds in a sandpile automaton, we introduce 

a two-state variable h = (h i ,h2 )  at each lattice site (i , j) ,  where hi and h2 are not 
necessarily integer. Each bond carries a quenched variable b with value b = i 1: the 
disorder here is that a random fraction c of  the bonds have b = - 1 .  The evolution rule 

for model B depends on the absolute value of  the difference between components hi 
and h2 at a site, which causes instability if it exceeds a critical value do The entire 

number of  particles then topple, and the two downstream neighboring sites are updated 
as follows (similar models were discussed earlier in Ref. [8] ): I f  
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Fig. 3. Distributions of duration P(t) and size D(s > so) of the relaxation clusters in model B for conserving 
a = 1 (solid lines) and nonconserving dynamics ,~ < 1 (open circles). 

Ih~(i , j )  - h2 ( i , j ) l  > de, ( 5 )  

then 

h i (± , j )  --+ O, h2 ( i , j )  ~ O, (6) 

and 

h l ( i + l , j + )  - - ~ h l ( i + l , j + ) + ( a h l ( i , j ) + h 2 ( i , j ) ) / 2 ,  if b =  +1,  (7) 

h 2 ( i +  1 , j ± )  ~ h 2 ( i +  1 , j ± )  + (/~h2(i , j)  + h l ( i , j ) ) / 2 ,  if b =  - 1 .  (8) 

For A = 1 the dynamics is conservative: all particles which leave site ( i , j )  appear at 

its neighbors. The instability condition Eq. (5) leads to a variety of  states with high 

local values of  hi and h2. The asymptotic state is, however, SOC, and it appears that 

the precise form of  the coupling between two states hi and h2 is unimportant (see also 

Ref. [9] ). Such a model incorporates some features of  neural networks, and introduces 

frustration effects [ 8 ]. 
It is necessary to have conservative dynamics (/~ = 1 ) in order for the system to self- 

organize into a critical state. Results of  numerical simulations for the distributions of  
duration P ( t )  and size D ( s  > so) are shown in Fig. 3 for concentration c = 0.5, A = 1 

(solid lines) and ~ = 0.9 (open circles). The present results average over simulations 
for a long time (-.~ 106 steps) from several configurations, each of  which is kept fixed 

for a particular simulation. The slopes of  the straight lines in the case of  conservative 

dynamics (,~ = 1) determine the critical exponents according to P ( t )  ~ t -(l+°) and 
D ( s  >_ so) ~ s - L  We find the best fit for 0 = 1.040 ± 0.018 and z = 0.650 ± 0.028. 
In this model the number of  relaxed "particles" n is not proportional to the number of  
sites s at which relaxation occurs, thus leading to a new distribution Q ( n )  ,- n -O+r ' ) .  

We also calculated (n( l ) ) ,  to obtain the exponent /z  defined in Eq. (3) ,  as well as the 
average number of  topplings in a cluster of  a specified length l, 



B. Tadi6, B. Ramaswamy/Physica A 224 (1996) 188--198 193 

(n)t "~ l ° ' .  (9) 

The scaling exponents are given in Table 1, and as we show in Section 5, they satisfy 

various scaling relations to within numerical error. 

It appears that the exponents are independent of  the concentration of  defect bonds 

c, suggesting universal criticality. Similar robustness is exhibited by the system for 

variations in A, provided that A is strictly smaller than one: namely, all curves for A < 1 

coincide with the open circle curves in Fig. 3. 

4. Nonuniversai criticality: random-slope model (C) 

Model C combines the critical height model with a critical slope instability criterion 

at defect sites. At these sites, which are randomly distributed with relative concentration 

c, large columns of  grains will form; these relax according to an alternative set of  rules: 

if at least one of  the two local slopes downstream of  site ( i , j )  exceeds a critical value 

o-c then toppling occurs towards these neighbors. If  

o ' k ( i , j )  --  h ( i , j )  - h ( i  + 1,jk) _> O'c, (10) 

then 

h ( i , j )  --* h ( i , j )  - 1, h ( i +  1 , j k )  --~ h ( i +  1 , j k )  + 1, ( l l )  

where the index k = -4- stands for right ( + )  or left ( - )  forward neighboring site. These 

rules are applied repeatedly until all slopes become subcritical. In order that topplings 

according to the critical height rule, where we set hc = 2, do not affect those topplings 

that proceed through critical slope dynamics, we set trc = 8 >> he. After some transient 

time local slopes o ' ( i , j )  ~, o-c - 1 are formed at randomly distributed defect sites, while 

the rest of  the system topples according to the critical height rule. Due to the nonlocal 

character o f  the critical slope rule in Eqs. ( 10) - (  11 ), topplings at defect sites may affect 

stability at their upstream neighbors too, and these sites might then topple in the next 

time step. In this way an internal time scale is introduced, although the macroscopic 

transport direction remains only one way, as in models A and B. 

Results o f  the numerical simulations for the distributions of  duration P (t > to), size 

D ( s  > so), and length P ( 1 )  are shown in Fig. 4 for three concentrations of  defect 

sites c = 0.05, 0.2, and 0.6. The exponents for this model, 0, 7-, and a defined via 
P ( t  > to) '~ t - ° ,  D ( s  > so) "~ s -T, and P ( 1 )  ~ /-(l+,~) respectively, have a (weak) 

concentration dependence. For instance, 0 = 0.516 + 0.002 for c = 0.05 increases 
to 0.581 + 0.001 for c = 0.6. Similarly, a = 0.499 + 0.012 at c = 0.05 changes to 
a = 0.563 4- 0.024 at c = 0.6, and ~" = 0.354 + 0.001 to ~- = 0.427 -4- 0.001 in the same 

region. For c > 0.7 the curves exhibit a finite curvature due to the multiple topplings. 

(The exponents given in Table 1 are for c = 0.2.) 
The average duration of  avalanches of  selected length l, (t)t in Fig. 4d, exhibits scale 

invariance, in agreement with the scaling properties of  the distributions, namely 
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(t)~ ~ t z ,  (12) 

where z is the dynamic exponent. We find from Fig. 4d that z = 1.013-4-0.001 for 

c = 0.6. The dynamic exponent differs from 1 as a consequence of  the nontrivial t ime 

scale in this model, although the values of  the other exponents are close to (but, as our 

numerical results suggest, distinct from) the ones in the absence of  defects. However, 

nonuniversal properties such as outflow current are different in the two cases: there are 

no apparent finite-size scaling effects in the presence of  defects. In the limit c ~ 1, all 

sites become subject to the critical slope rule, Eqs. ( 1 0 ) - ( 1 1 ) ,  due to which a finite 

slope is formed. SOC is lost, since every avalanche is of  infinite duration: the dynamics 

is dominated by single grain (one in /one  out) events. 
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Fig. 5. Average size of  the relaxation clusters (s)/ of selected length l, measured parallel to the transport 
direction, for models A, B, and C, as indicated. 

5 .  N o n e q u i l i b r i u m  p h a s e  t r a n s i t i o n s  

In the preceding sections we have shown that sandpile automata are able to self- 
organize into a critical state in the presence of frozen-in random defects, provided that 
the dynamics conserves the number of grains at each time step. The sets of critical 

exponents for all three models are summarized in Table 1. For model A without defects 

the exponents are known exactly [2]. Model C exponents are for concentration c = 0.2 
of defect sites. (Note that in models A and B time scale is measured in units of 

length, therefore the corresponding exponents are equivalent, i.e., a -= 0.) Also given 

is the mass-to-scale ratio Dll defined with respect to the length parallel to the transport 

direction, 

(S)l ~ I oil, (13) 

where (s)t is the time-averaged size of clusters of selected length l. In Fig. 5, (s)t is 
obtained from separate numerical simulations for models A, B, and C. The exponent 
D ,  (cf. Eq. (9 ) )  is also given in Table 1. The numerical values of the exponents are in 
reasonable agreement with the following scaling relation which can be shown to hold 
in all directed models: 

Oz = Dll T = Dn ~'. = a.  (14) 

An order parameter which is appropriate for the defect-mediated phase transitions 
which occur in all three models can be defined as q ( c )  = 1 - ( J ( c ) ) / ( J ( O ) ) ,  with 
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(J(c)) the outflow current, which is the total number of  particles that flow over the 

lower boundary of  the system in the presence of  defects of  concentration c. ('/ denotes 

an average over the total number of  Monte Carlo steps. 

In the models with conservative dynamics, i.e., model B with A = 1 and model C, 

the average flux out of  the system is balanced by the incoming current, thus leading 

to the vanishing of  the order parameter in the self-organized critical state, as shown 

in Fig. 6. In model A, however, (J(c))/(J(O)) decreases due to nonconservation of  

number of  particles at defect sites, leading to the appearance of  finite order parameter q 

with increasing concentration of  defect sites. For c >_ c* = 0.295 - 1 - Pa, the directed 

percolation threshold, the states are such that only finite avalanches occur, while for 

c < c* there are relaxation clusters of  all sizes. The slope of  the q(c) curve at c = c* 
is close to zero. In this way, model A is subcritical for finite concentration c, which 

appears as a control parameter tuning the coherence length of  the self-organized state. In 
the limit c ~ 0 the coherence length diverges, as discussed in Section 2. Our numerical 

values indicate that the order-parameter curve approaches the vertical axis with a large 
but finite slope. We find the same phenomenon in model B with nonconserving dynamics 

(A < 1), where transfer is incomplete at each negative bond. (Model B is symmetric 

with respect to transformation c --* 1 - c, reflecting the symmetry between positive and 
negative bonds, as can be seen in Fig. 6.) 

There is another type of  defect-mediated phase transition in model C in the limit c 
1. At this point SOC is lost in favor of  a state with finite net slope. This nonequilibrium 
phase transition requires a more detailed study. In the related case of  annealed defects - 
when the probability of  toppling p varies at each time step but is the same for all sites 
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in the system - a collective phase transition appears at Pc = 0.293 [ 10]. 
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6. Summary 

The presence of  frozen-in defects in two-dimensional directed sandpile automata leads 

to various new phenomena. In this paper, we have introduced and studied three variations 

of  the directed abelian sandpile automaton on the square lattice in order to explore this 

problem. We find that for site disorder, if the dynamics is nonconservative at defects, the 

system is driven into a subcritical state with a finite correlation length, which depends on 

the concentration c o f  defects. With any concentration of  bond disorder, the correlation 

length remains finite and independent of  the degree of  nonconservation, provided that 

there is some loss o f  conservation, A < 1. (Other models of  nonconservative cellular 

automata have been studied recently [ 11 ], and are seen to have robust SOC behavior. 

Here we have lack of  conservation occurring solely due to the presence of  defects.) 

Furthermore, if the dynamics is conservative, the automaton self-organizes into a critical 

state with universal scaling properties. For a third type, the case of  random slope defects, 

which correspond most closely to the random field version of  analogous spin problems, 

we observe some indications of  nonuniversal, concentration-dependent scaling exponents. 

Scaling relations between the exponents are fulfilled exactly for the first model (with 

c = 0),  and within numerical error for the latter two models for each concentration of  
disorder. Finally, varying the concentration of  defects appears to be a mechanism for 

continuously tuning the local rules of  relaxation, which may eventually lead to a phase 

transition between metastable states with different properties. 
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