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Abstract. The transcription factor NF−κB is a crucial component
in inflammatory signalling. Its dynamics is known to be oscillatory
and has been extensively studied. Using a recently developed model
of NF−κB regulation, we examine the collective dynamics of a net-
work of NF−κB oscillators that are coupled exogenously by a common
drive (in this case a periodically varying cytokine signal corresponding
to the TNF molecule concentration). There is multistability owing to
the overlapping of Arnol’d tongues in each of the oscillators, and thus
the collective dynamics exhibit a variety of complex dynamical states.
We also study the case of a globally (mean field) coupled network and
observe that the ensemble can display global synchronisation, cluster
synchronisation and splay states. In addition, there can be dynamical
chimeras, namely coexisting synchronised and desynchronized clusters.
The basins of attraction of these different collective states are studied
and the parametric dependence in the basin uncertainty is examined.

1 Introduction

Rhythmic phenomena in biological systems occur on a wide range of time-scales,
from the millisecond level firing in neuronal systems to cycles of decades or more
that are seen in ecology [1–6]. These rhythms are maintained by biological oscillators
of various kinds [7], and their mutual interactions have been of considerable recent
interest. Numerous phenomena at the cellular and subcellular levels are oscillatory,
and many forms of control and signalling within biological cells are known to depend
on periodicities in the expression levels of key molecular components [5–9].

Our interest in this work is on the collective dynamics of a group of oscillators
that model the intracellular dynamics of an ubiquitous transcription factor, NF−κB
[10,11]. Since stochasticity and nonlinearity are both very significant in a cellular
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environment, we examine a model of NF−κB dynamics that is known to have complex
chaotic dynamics and investigate emergent behaviour in an ensemble of such systems.

The transcription factor NF−κB has a profound impact at the cellular and tissue
levels, and has a significant effect at the physiological level as well [10]. Diverse signals
appear to be mediated via NF−κB: cell survival, cell proliferation [12], development
[13], the maintenance of the immune system [14], inflammation response [15], and
so on. These phenomena clearly involve the concerted effects of both intracellular
oscillators and intercellular communication.

These aspects motivate the present study of dynamics in an ensemble of coupled
NF−κB networks. Most natural systems are not isolated, and thus one motivation
for the present work is to examine the effect of coupling on the dynamics. Indeed the
case of coupled networks (or even a network of networks) is likely to be the natural
setting, when the interaction between systems leads to their having a high degree of
dynamical correlation.

At the same time, studies on the dynamics of nonlinear systems have shown
that there can be several forms of complex individual as well as collective dynamics.
For instance, there may be more than one attractor of the dynamics so that different
asymptotic states can coexist. Bi- (or multi-) stability can arise autonomously [16], or
can result from the coupling [17,18]. When the multistability is induced, the coupled
system can display a variety of novel dynamical behaviours, ranging from global
synchrony to cluster synchrony and splay states [19,20], some of which have found
parallels in biological dynamics [21,22]. Indeed, in such cases synchrony may well be
essential for their proper functioning [23].

This paper is organized as follows. The model NF−κB network studied here is
described in detail in Section 2. Developed over the past few years by Jensen, Krishna
and co-workers [24,25], this model has been studied in great detail; see [26] for a recent
summary. All essential molecules that are involved in the network have been incor-
porated in this somewhat minimalistic model (details of which are given below). We
explore the dynamics of a single regulatory network and describe the occurrence of
multistability, the basins of attraction of the different attractors and their geome-
try. The collective dynamics of an ensemble of such externally coupled networks is
discussed in Section 3, followed by a study of globally mean-field coupled NF−κB net-
works. We conclude in Section 4 with a discussion and summary of our main results.

2 NF−κB model dynamics

Jensen and Krishna [25,26] introduced the following reduced model of the NF−κB
network that captures the essential features of the dynamics. It consists of a set of
five coupled differential equations,

ẋ = Vx(Nx − x)
Kz

Kz + z
− Vzz

x

Kx + x

ẏ = Γyx
2 −∆yy

ż = Γzy −∆zu(Nx − x)
z

Kz + z
u̇ = Γuτw −∆uu

v̇ = ∆uu− Vvv
KA

KA +A20τ

τ = A0 +A sin

(
2π

T
t

)
w = Nuv − u− v, (1)
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Fig. 1. Schematic of an individual NF−κB network (see the central panel) coupled to
other similar networks. Within the cell nucleus NF−κB promotes the production of IκBα
which then binds to NF−κB, generating negative feedback. External TNF (common to all
cells) drives IKK oscillations as indicated. In its active form, IKK in the cytoplasm helps
to degrade bound IκBα, freeing up the NF−κB which is then transported into the nucleus.
These coupled feedback loops effectively cause NF−κB oscillations. We also consider a global
mean-field coupling through NF−κB itself (denoted by the blue arrows) which connects all
the networks. Each cell is coupled to all other cells, as indicated schematically in the top
right corner inset.

wherein the variables represent concentrations of select components of the NF−κB
module. In addition to the NF−κB protein, these include the inhibitor IκB, the
tumor necrosis factor (TNF) and the enzyme IKK, which is a kinase; see Figure 1 for
a schematic of the network.

We briefly discuss the role of the key molecular species that are involved in the net-
work. TNF is a cytokine with both pathological and physiological functions [27–29].
While its primary role is to stimulate inflammatory response during infection, but it
also plays role in apoptosis as well as necrosis [28,30]. TNF binds to the receptors
TNFR1 and TNFR2 which are produced in many tissues. This binding leads to con-
formation changes that activate the NF−κB and MAPK pathways [28] and signalling
of apoptosis. The cellular protein IκBα binds to NF−κB dimers to sterically prevent
NF−κB from entering the nucleus [31]. In order that the NF−κB protein moves into
the nucleus where it can carry out its function, the sequential phosphorylation, ubiq-
uitination, and degradation of IκBα is essential [31,32]. Some of these latter actions
such as the phosphorylation of IκB and NF−κB proteins are accomplished via signals
from NF−κB activating stimuli such as the IκB kinase (IKK) that is composed of
the two serine-threonine kinases (IKKα and IKKβ) and a regulatory subunit (IKKγ)
[32]. Clearly all these molecules play a crucial role in the nuclear localisation and
activation of NF−κB.
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Fig. 2. Bifurcation diagram as a function of the TNF amplitude for periods a) T = 60 (top
left), and c) T = 120 (bottom left), and as a function of the period T for fixed amplitudes b)
A = 0.211 (top right) and d) A = 0.3 (bottom right). Plotted on the ordinate in all panels
are the maxima of the NF−κB concentration, namely x, over a sufficiently large number of
oscillations.

The notation is as follows [25]: x, y, and z are respectively the concentrations of
the nuclear NF−κB protein, I-κB RNA and I-κB. The external TNF concentration
τ is periodically modulated with time period T . This affects the dynamics of the
neutral IKK w through its action on the active and inactive forms of IKK, denoted u
and v respectively. As can be noted, the above equations describe a feedback loop in
(x, y, z) coupled to the (u, v, w) system that is externally driven by the autonomous
and periodic TNF oscillator.

The dynamics that results from the above five equations has been extensively
studied by Jensen and co-workers in a series of papers [26,33–35]. It was recently
shown [26] that depending on the modulation, there can be bistability in the system
as a consequence of the overlapping of Arnold tongues: different initial conditions can
correspond to different resonances.

We recall the main dynamical features of this system [25,35,36]. It is convenient to
examine a bifurcation diagram that results from a variation of the parameters of the
external modulation, namely A and T , the amplitude and period of TNF variation
respectively. The bifurcation diagram is obtained in the standard way: the equations
of motion are integrated, transients are discarded and a large number of successive
maxima of the NF−κB oscillations, namely the variable x are plotted subsequently.
Several initial conditions are chosen for each value of the parameters so that bistability
or multistability is immediately apparent. Figure 2, which is representative, has the
following features. When the period is fixed and the amplitude is varied (panels
on the left), there are extensive regions of multistability that occur subsequent to
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Fig. 3. Basins of attraction for the two coexisting attractors at A = 0.2042 and T = 60.
The blue points are attracted to a chaotic attractor while the yellow points go to a limit
cycle.

period-doubling bifurcations and these appear to be of two basic types: there can
be coexistence of periodic orbits (namely limit cycles) of different periods as well as
periodic orbits coexisting with more complex dynamics, namely chaotic orbits. Very
similar behaviour is seen if the amplitude is fixed and the period is varied (the panels
on the right; the choice of A = 0.211 and A = 0.3 is representative). In our simulations
we follow earlier studies [26] and use the following values for the several parameters
in the model: Vx = 5.4, Nx = 1, Kz = 0.035, Vz = 0.018, Kx = 0.029, Γy = 1.03,
∆y = 0.017, Γz = 0.24, ∆z = 1.05, Γu = 0.24, Nuv = 2.0, ∆u = 0.18, Vv = 0.036,
A20 = 0.0026, KA = 0.0018, and A0 = 0.5.

We have examined the dynamics at several values of the period T and find
that there typically is a region where two limit cycles coexist. In addition, there
can be exterior crises, leading to a chaotic region. The basins of attraction in the
region of multistability appears to be highly mixed (we discuss the characterization
below). For A = 0.2042 and T = 60, there are two coexisting limit cycles owing to
the overlapping Arnold tongues [26]. Points leading to the different attractors are
shown in blue and yellow in Figure 3, for a small patch of initial conditions on the
x− z plane.

2.1 Attractor basins: boundary fractality and entropy

When the dynamics displays bistability or multistability, the nature of the attractor
basins is naturally of interest. The manner in which the basins are arranged in the
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Fig. 4. Fractal dimension of the basins as computed from the basin entropy, as a function of
the TNF period and amplitude. Calculations were done for selected amplitudes and periods
T = 45 (dashed), 60 (solid) and 70 (dotted line).

phase space has a major effect on the dynamics of an ensemble of such oscillators,
especially when they may be described as being intertwined or intermingled [37–39].
In such cases the prediction of the eventual attractor for a set of initial conditions can
be difficult, and a recently proposed measure, the basin entropy, attempts to quantify
this uncertainty [40].

Following the procedure specified by Daza et al. [40], the basin entropy is com-
puted by first classifying a set of points inside a box of initial conditions by their
corresponding final states. We thus determine the number of initial conditions going
to each attractor, and this is then used to calculate the Boltzman entropy

Si = −
mi∑
j=1

pij ln pij ,

where mi is the number of attractors in the ith box and pij is the probability of the
jth attractor in that box. The basin entropy at a particular scale ε is the average of
Si for all boxes, namely

Sb(ε) =
1

N

N∑
i=1

Si.

The uncertainty coefficient α, the exponent in the scaling behaviour of Sb,

Sb(ε) ∼ εα,

can be numerically estimated as the slope in a log-log plot of Sb versus ε. Similarly
the fractal dimension db is determined from the scaling of the fraction Fb of points
in the boxes, Fb(ε) ∼ ε−db .

We find that in this system, the basin uncertainty increases as a function of the
TNF amplitude: see Figures 4 and 5 (right panels). This indicates that the dynamics
of an ensemble is likely to become more complex as the external TNF amplitude is
increased whereas there is a decrease in entropy when the period of modulation is
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Fig. 5. Dynamics in the coupled networks of N = 100 NF−κB oscillators. The values of
the TNF amplitude and period are a) T = 120, A = 0.2, b) T = 60, A = 0.15, c) T = 60,
A = 0.185, and d) T = 60, A = 0.2042 respectively. The basins of attraction for the different
states are shown on the right, while on the left is a space-time plot in a time interval. The
maxima of the different oscillators are shown, and one can clearly identify the different clus-
ters that are formed. Note the coexistence of coherent clusters and an asynchronous set in d).

increased. This correlates with earlier experimental observations by Kellog and Tay
[36] that reduced doses and large periods of TNF leads to synchronous oscillations
and improved entrainment. As seen in our simulations, when A is low and T is large,
namely the TNF oscillations have a small amplitude and large periods, the attractor
basins are well separated and would therefore be more immune to noise-induced
hopping, leading to better entrained and synchronous populations.



858 The European Physical Journal Special Topics

3 Dynamics of coupled NF−κB networks

We first examine the dynamics of an ensemble of NF−κB networks which are all
indirectly coupled through a common TNF oscillator: see Figure 1. The equations of
motion for this system are

ẋi = Vx(Nx − xi)
Kz

Kz + zi
− Vzzi

xi
Kx + xi

ẏi = Γyx
2
i −∆yyi

żi = Γzyi −∆zu(Nx − xi)
z

Kz + zi
, (2)

with the subscript i = 1, 2, . . . , N labeling the individual oscillators. The dynamics of
TNF is governed by the equations of motion for the variables u, v, w and τ and these
are as in equation (1). When the parameters are such that there is a single stable
attractor, all the oscillators in the ensemble synchronise into a single cluster (Fig. 5a).
It can also happen that splay states are formed, namely the oscillators separate into
multiple groups that are phase locked with respect to each other. Figure 5b shows two
clusters denoted A1, and A2. The dynamics of each oscillator is on the same period
one limit cycle attractor, but the two clusters are phase-locked with respect to each
other. Similarly we can find splay states for period 2 limit cycle and so on (not shown).

In addition to complete synchronization and splay states, in regions of mul-
tistability where all the attractors are not chaotic, the oscillators can also show
cluster synchronization, with different subsets being attracted to different attrac-
tors. Figure 5c shows such a state, with blocks named A1 and A2 corresponding to
the splay states of the period one attractor while B1, B2, B3, B4, B5 and B6 cor-
respond to the splay states of the period two oscillator. Similarly we can find such
cluster synchronised populations for various combinations of periodic limit cycles.

In multistable regions where chaotic and periodic attractors coexist, the ensemble
breaks up into clusters of in-phase or phase locked synchrony coexisting with a group
that is desynchronised. In Figure 5d, the blocks marked B1, B2, B3 and B4 represent
the synchronised groups on period 2 attractors. All oscillators in the group denoted C
are desynchronised and the dynamics is chaotic. Such complexity is not exceptional
in this system: chimeric states of this general type, namely mixtures of synchronised
and desynchronous chaotic dynamics can be found for a range of parameters.

The emergence of chimeras in an ensemble of identical oscillators forced by a com-
mon drive was also observed in a previous study of an ensemble of Lorenz oscillators
[19,20], where the driving itself created multistability. Here, on the other hand, mul-
tistability is a consequence of the overlapping of the Arnold tongues and this leads
to chimeras in the ensemble.

3.1 Globally coupled NF−κB oscillators

We now consider the case when all oscillators interact through a global mean-field
diffusive coupling in NF−κB. The dynamical equations are thus modified to

ẋi = Vx(Nx − xi)
Kz

Kz + zi
− Vzzi

xi
Kx + xi

+
K

N − 1

∑
j 6=i

(xj − xi), (3)

where K is the strength of coupling between oscillators, N is total number of
oscillators and the subscripts i and j label the individual oscillators.
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Fig. 6. Bifurcation diagram for mean-field coupled NF−κB oscillators with K = 0.005 as
a function of the TNF amplitude for fixed periods, T = 60 (top-left) and T = 120 (bottom-
left), and as a function of the TNF Period for fixed amplitude A = 0.2011 (top-right) and
A = 0.3 (bottom-right). The ensemble contains N = 64 oscillators.

The ensemble dynamics can be significantly affected at even low coupling as can
be seen in the bifurcation diagram, Figure 6. The variation with A is similar in
overall structure to the uncoupled case, although new bifurcations can clearly be
created. This differential influence of the coupling can lead to the establishment of
newer multistable regions and also their loss. One such instance occurs at A = 0.209,
where the coupling leads to the creation of a chaotic attractor in addition to the
existing period two attractor. At this point of multistability, the ensemble shows
a weak chimera [41], namely a partial frequency synchronisation in chaotic orbits.
The oscillators on the period two limit cycle and chaotic attractor are organised
into splay states. In Figure 7c the blocks denoted by B1, B2, B3 and B4 represent
splay states of the period two attractor while the dynamics in the cluster marked
C0 is desynchronised chaotic motion. A scatter plot of NF−κB maxima between all
possible pairs of oscillator groups shows the difference between phase synchronisation,
splay states and weak chimeras.

To understand the effect of increasing coupling we coupled a population of 100
oscillators by mean-field coupling and observed the population behaviour at various
coupling strengths. We chose A = 0.209 where there is a single period 2 attractor and
population is spliced into 4 synchronised groups, with two peaks at around 0.33 and
0.29 (Figs. 7a and 8a). We started with a very low normalised coupling constant of
K = 0.001, the population behaviour is same as before a 4 spliced synchronization and
no new peaks are created (Figs. 7b and 8b). At K = 0.005 the population showed a
chimera state (Fig. 7c). The populations is broken into two groups. One is represented
by splay states of period two attractor, with peaks at around 0.33 and 0.29 (Fig. 8c).
The other group is represented by chaotic orbits with mean peak at around 0.4
(Fig. 8d). At K = 0.05 coupling the population is organised into 4 groups (Fig. 7d).
First two are synchronised to two different period two attractors (Fig. 8e). The third
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Fig. 7. Heat plot (as in Fig. 5, left panels) for an ensemble of 100 globally coupled oscillators
for TNF period T = 60 and amplitude A= 0.209. The different panels correspond to coupling
a) K = 0, b) K = 0.001 (cluster synchrony), c) K = 0.005 (chimera), d) K = 0.05 (chimera),
e) K = 0.5 (asynchrony), and f) K = 2 (full synchrony) respectively.

and fourth groups are highly chaotic, with oscillators in third group being highly
synchronised (Fig. 8f) and fourth are not synchronised (Fig. 8g). Further increase
in coupling led to more synchronised population but with highly chaotic orbits (at
K = 0.1 and 0.5) (Figs. 7e and 8h). For even larger coupling, the entire population
synchronises to period-2 oscillations (Figs. 7f and 8i).

4 Discussion and summary

In the present work we have examined the collective dynamics that emerge through
the interaction of networks of the important transcription factor, NF−κB. The fact
that the dynamics of NF−κB in a single cell is oscillatory offers the possibility that it
leads to differential gene expression [24,33,35,42]. When in addition, there is bistabil-
ity (or multistability), there is the possibility of dynamical switching; an effect that
can arise is noise-induced hopping that can help a cell switch between high and low
production states for defined genes, namely multiplexing [35]. Noise can lead to an
incoherent population, as has been experimentally observed [35,43].

In addition to states of global synchrony, the present network shows complex
organization: an ensemble of cells can separate into clusters, each of which is indi-
vidually synchronized. There can also be splay states as well as chimeras, namely
the coexistence of coherent and incoherent populations of oscillators. In the present
system, there are two types of coupling: all cells are driven externally by the periodic
variation of a key enzyme, TNF, and there can be a global mean field formed by the
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Fig. 8. Time series of the NF−κB oscillations in global mean-field coupled oscillators for
fixed TNF period T = 60 and amplitude A = 0.209. The time is in units of 1000 seconds.
a) Splay state for zero coupling, b) splay state for K = 0.001, c) period two splay for
K = 0.005, d) asynchronous chaotic oscillations for K = 0.005, e) two groups of synchro-
nised period-2 oscillators for K = 0.05, f) synchronised chaotic oscillators for K = 0.05, g)
non-synchronised chaotic oscillations for K = 0.05, h) partially synchronised chaotic oscil-
lations for K = 0.5, and i) fully synchronised period 2 oscillations for K = 2. Note that the
x-axes in panels f) and h) are different from the others.

NF−κB in all cells. In all these cases, we find that the basins of different attractors
have a complex geometry, and while it is difficult to establish that they are riddled,
the fractality of the basin boundaries would indicate that the final state is highly
sensitive to initial conditions. By measuring the uncertainty coefficient of the basins,
we find that the amplitude and period of TNF variation play an important role in
determining the global dynamics. An increase in the amplitude increase the basin
uncertainty, suggesting that the system sensitivity to noise will be amplified with
increasing amplitude [35,36].

We conclude with some observations regarding the possible role of dynamical
chimeras in biological systems. As has been pointed out by Pisarchik and Feudel [17]
and Pecora and co-workers [23] among others, multistability in the dynamics may
be an essential requirement in biological systems since this forms the basis of many
switches [44,45]. Dynamical symmetries – such as the creation of global sychrony –
and the breaking of such symmetries are both of fundamental importance in biol-
ogy, especially in qualitative cellular transitions and decision-making [46]. Symmetry
breaking is essential during development, immune response, hormesis etc. Dynamical
chimeras, with both coherent and incoherent populations provide such an opportu-
nity for cellular oscillators to break an existing symmetry, and this could play a role
during inflammation and tissue repair, when both temporal and spatial synchrony
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are envisaged in a cellular population [47,48]. Here multistability can play a crucial
role.

D. Raviteja thanks the CSIR, India for the Shyama Prasad Mukherjee Fellowship. Ram
Ramaswamy acknowledges the support of the Department of Science and Technology, India
through the JC Bose National Fellowship.
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