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The highlights of the work are as follows:
(1) Heterogeneity introduced on random sites can alter both
quantitative as well as qualitative features of emergent network
dynamics when compared with the homogeneous setting.
(2) Higher degree nodes occupied with heterogeneities may increase
the network's ability to sustain periodic activity.
(3) Calculation of Boolean Lyapunov exponent and semi-annealed approximation produces graphs  
qualitatively similar to the dynamical activity curves.

*Highlights (for review)
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We examine the collective dynamics of heterogeneous random networks of model neuronal cellular
automata. Each automaton has b active states, a single silent state and r − b− 1 refractory states,
and can show ‘spiking’ or ‘bursting’ behavior, depending on the values of b. We show that phase
transitions that occur in the dynamical activity can be related to phase transitions in the structure
of Erdős–Rényi graphs as a function of edge probability. Different forms of heterogeneity allow
distinct structural phase transitions to become relevant. We also show that the dynamics on the
network can be described by a semi-annealed process and, as a result, can be related to the Boolean
Lyapunov exponent.

Keywords: discrete dynamics, periodic activity, binary mixtures, network motif, Boolean Lyapunov Exponent,
semi–annealed approximation.

I. INTRODUCTION

As has increasingly been recognized in the past decades, the network paradigm is a useful one within which to
understand and study a very large variety of natural systems [1–6]. These ideas have been applied in diverse contexts,
with nodes representing entities ranging from neurons [7], genes [8, 9], and humans [10], to animals [11], power
grids [12], railway stations [13] etc. Depending upon how these nodes interact with each other, the connecting links
can be unidirectional or bidirectional, and further, can have interesting topological structure. It has thus been
found necessary and useful to study different types of networks, ranging from purely random networks such as that
described by Erdős and Rényi (ER) [14], to highly structured networks with a power–law degree distribution [15],
ordered networks in which some links are disordered [16], modular networks, and so on. Each class of network has
distinct geometric properties such as the degree distribution or the clustering coefficient [16].

In this paper, we study the collective dynamics of model neuronal systems on an ER network on which nodes are
coupled bidirectionally with probability p. A simplified description of a neuron is afforded by the so called (r : b)
automaton that has b active states, a single silent state, and r − b − 1 refractory states [17], and we study networks
with such an automaton at each node. When b = 1, the node has one active state and mimics a spiking neuron,
while when b > 1, the node has several active states and behaves like a bursting neuron. At any time step a node
can be in the refractory, silent or active state. As will be described in detail below, the state of the node is updated
in discrete time depending on two factors: its current state and the state of the nodes to which it is coupled. We are
interested in computing the probability that an initial condition lies on a trajectory that converges to a period orbit
of the dynamics, which we denote by Af .

In earlier work involving ER networks with homogeneous nodes [17], we have studied the dependence of the dynamics
on three different aspects of the network: the topology that can be tuned by the probability p, the rules for interaction
between the nodes, and the value of b, namely whether the node corresponded to a spiking or bursting neuron [17, 18].
Of the many possible nodal interaction rules, we considered two extremes, namely simple loading (SL) and majority
rule (MR), wherein a single (at least half of the) active neighbor(s) of a silent node causes it to become active at the
next time step.

In this paper, we focus our attention on how the dynamics depends on the level of heterogeneity in the graph. Since
there are a variety of ways in which heterogeneity can be introduced, we restrict our attention to the following cases,

1. Heterogeneity in intrinsic nodal properties: In a neuronal network all neurons need not be identical. Different
neurons can spend differing amounts of time in active or refractory states. This motivates the study of a
network with heterogeneous nodal dynamics [19], and here, starting with a network with all nodes having (r : b)
automata, we replace a random fraction of nodes with (r′ : b′) automata. Results for the case when all automata
on the random networks are identical are already known [17].

2. Heterogeneity in nodal interaction rules distributed randomly: We include the possibility of excitation at a
fraction x of the nodes, chosen randomly, occurring via the SL rule, and at (1− x) through the MR interaction
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rule. In earlier work [17], all nodes had the same rule, i. e. x = 0 or 1.

3. Heterogeneity distributed at high degree nodes: We consider finite size networks such that the degree distri-
bution at nodes is not necessarily uniform and examine the difference in the dynamics when the two forms of
heterogeneity are at low or high degree nodes.

To analyze these cases, we shall first discuss and prove some results on small networks of either two or three nodes.
Using these results and our prior work [17], we can predict in many cases how heterogeneity affects the dynamics
of a larger network. We use simulations to validate those predictions. Additionally, the process of calculating Af is
quite similar to a semi-annealed process [20, 21], which itself is related to calculating stability boundaries in quenched
and annealed networks [22, 23]. In specific cases, the large N behavior of the annealed and semi-annealed network
approximates the behavior of the quenched system. The stability of these networks is determined by calculating a
Boolean Lyapunov exponent (BLE) [24]. In Section IV, we make use of a calculation similar to the semi–annealed
approximation and show in simulations that this approximation, Af and the BLE yield qualitatively similar results.
The automaton model and the ER network are discussed in Section II. Analytical results on small homogeneous
network motifs are presented in III. Results are shown for small and large heterogeneous mixtures of (r : b) and
(r′ : b′) automata in Section IV, and the study is summarized in Section V.

II. NEURONAL AUTOMATA ON NETWORKS

A random graph can be constructed by fixing the number of nodes, N , each pair of which is connected with
probability p. As is well known [14], the degree distribution is binomial with the average degree of each node being
equal to Np for large N .

Each node of the network is occupied by an automaton that mimics neuronal activity in the following sense. The
automaton has r states of which b are denoted “active”, m = r − b − 1 are “refractory” and there is a single silent
state. As described earlier [17, 18], it is convenient to represent the silent state by 0, the refractory states as the
negative integers −m, . . .−1, and the active states as positive integers, 1 . . . b. At any time-step t, therefore, the state
of an automaton at node i, denoted by σi(t) can take an integer value ∈ [−m, b].

It is useful to differentiate (r : b) automata by the relative times spent in the active state during a complete cycle.
When r > 2b, nodes spend a longer time in the refractory phase, while if r ≤ 2b, the active phase is longer. We
examine two specific cases: a spiking neuron with b = 1, and a “bursting” neuron with r ≤ 2b and b > 1. For bursting
nodes, we shall mostly focus on the case when the neuron has only one refractory state so that r = b+ 2. We define
f = b/r as the fraction of states that are active.

The nodal dynamics obey the following local rules.

1. If the node is at the end of its active period it transits to the start of the refractory state, namely if σi(t) = b,
then

σi(t+ 1) = −m. (1)

2. An automaton in any other active state, or in a refractory state has a spontaneous transition that is independent
of its neighbor(s). Thus, if 1 ≤ σi(t) ≤ b− 1, or −m ≤ σi(t) < 0, then

σi(t+ 1) = σi(t) + 1 (2)

3. The communication between nodes is meant to mimic gap junctional coupling between neurons. In the biological
situation, current flows directly between any two neurons that are connected by a gap junction, affecting the
membrane potential of both. Depending on the number of gap junctional connections an individual neuron has
to others, input from any of its neighbors may or may not allow the cell to become active [25]. This is taken
into consideration by allowing a silent node to become active if there is an adequate input from its neighbors
determined by a so–called loading rule. In the case of simple loading (SL), a silent node becomes active at the
next time step when it has at least one active neighbor. Through the majority rule (MR) a silent node can
become active only if at least half of its neighbors are active. When considering small networks of nodes, we
shall also utilize an absolute majority (AM) rule in which case more than half of the neighbors of a silent node
must be active. Thus if σi(t) = 0, then,

σi(t+ 1) = 1 under





(SL) if at least one neighbor is active,
(MR) if at least half the neighbors are active,
(AM) if more than half the neighbors are active.

(3)
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As N →∞, there is no qualitative difference between MR and AM.

The configuration of the system at any time t is specified by the vector σ(t) = {σ1(t), σ2(t), . . . , σN (t)}. A periodic
orbit is defined by the condition σ(t+q) = σ(t) for some q > 0. A period–1 orbit is a fixed point, namely σ(t+1) = σ(t),
and as can be trivially seen, the unique fixed point of the system is σ = 0. In the present system, it is clear that all
orbits are either eventually fixed or periodic since the state space of the system of N nodes is finite, having size rN .

We define the activity Af as the probability that an arbitrary initial condition lies within the basin of attraction
of a periodic orbit. We are interested in determining how Af depends on the specific graph structure, intrinsic
dynamics and nodal interaction rules within the network. The basic structure of a random graph as a function of
edge probability was first investigated by Erdős and Rényi [14]. They showed that as the edge probability increases,
different topological properties emerge at specific thresholds. Important for the present study are the phase transitions
for an almost sure occurrence of an edge between two nodes at p ∼ O(1/N2), of a cycle when p ∼ O(1/N) and for
the disappearance of the last isolated node at p ∼ O((ln N)/N). As discussed below, we have previously [17] related
these thresholds to specific transitions of Af in the context of homogeneous networks. Our goal here is to relate these
structural features to heterogeneous networks.

III. DYNAMICS ON HOMOGENEOUS NETWORKS

We briefly review a few of the key results from our previous work on homogeneous networks [17]. We have shown
that under certain conditions Af undergoes a sharp transition from 0 to 1 around p ∼ O(1/N2) for bursting neurons
when r ≤ 2b and r = b + 2 with either the SL or MR interaction rule. The emergence of the first edge in the graph
around O(1/N2) is a necessary condition for sustained periodic activity in bursting nodes. The condition r ≤ 2b
ensures that nodes spend a sufficient amount of time in the active states to allow their effect to ultimately be felt
by other nodes that are transitioning through the refractory states to the silent state. For example, when r = b+ 2,
as b → ∞, the probability that a randomly chosen initial condition lies in the basin of attraction of a periodic orbit
tends to 1 as increasingly more number of nodes are likely to be in the active state. We proved this result for the SL
interaction rule in [17] and showed that it numerically holds in the MR case too. The reason for the latter is that
when p ∼ O(1/N2), the graph is dominated by sets of nodes connected by only a few edges. Thus, at this level of
connectivity the effect of the SL and MR loading rules is identical in the network. The phase transition in Af for
networks of spiking neurons (b = 1) that utilize the SL interaction rule occurs for p ∼ O(1/N) with the emergence of
cycles. With the SL rule, the activity curves Af in these cases are a monotone increasing function of p.

When considering the MR rule for bursting nodes with r ≤ 2b, we found in simulations that the shape of the activity
curve Af is dependent on the fraction f = b/r. In [17], we conjectured that in the limit of N → ∞, there exists a
critical value, f∗ such that if nodes in the network have 1/2 ≤ f < f∗, the activity curve is a non-monotonic function
of p. The local minimum of Af occurs around O((lnN)/N). If, however, f > f∗ then Af is monotone increasing
under the MR rule. We provided some analytic justification for the conjectured existence of a critical fraction, which
we estimated to lie in 12/19 < f∗ < 7/11. Below, we provide more analytic results to support the conjecture.

A. Networks of three nodes

A fair amount can be learned about how the loading rules affect activity in larger sized networks by building off
of insights obtained from small network motifs. Indeed in our previous work [17], the emergence of a threshold at
p ∼ O(1/N2) for the activity of bursting nodes can be discerned from an analytic result we proved there for just
N = 2 nodes. Here, we study the case of N = 3 homogeneous nodes to gain insight into the conjectured existence of
f∗. For N = 3, the SL and MR rules affect network activity in identical ways. This is because a silent node can have
at most two neighbors and both SL and MR require that at least one of the neighbors be in the active state for the
silent node to become active. However, the AM rule differs, in that both neighboring nodes would need to be active
for the transition 0→ 1 to occur. The result below utilizing the AM rule shows how non-monotonicity can arise as a
function of edge probability p.

Proposition 1: Consider the AM rule on a network of three r : b nodes with r = b+m+ 1 such that r ≤ 2b. Then

Af (p) = 3p (1− p)
(
f − m

r

)(
1− p+

(
f − m

r

)
p
)

+ p3

(
f − 2m

r

)(
f − 2m+ 1

r

)
(4)
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FIG. 1: Analytical (dashed lines) and numerical (solid lines) activity curves (Af ) for N =3 nodes for different r : b values (a)
11:7 and (b) 10:8. Note that in (a) since f = 7/11 is less than 2/3, Af (p) → 0 as p → 1. Numerical results were generated
using the AM loading rule.

Proof: The activity on the random graph is equal to a sum over the product of the probability of a particular
graph existing with the probability of activity existing on that graph. For the case of three nodes, there is one graph
with no edges, three graphs with one edge, three graphs with two edges (like a V shape) and one graph with three
edges (a triangle). We denote the probability for activity to exist on any one of these subgraphs as A∅, AE , AV and
A∆ respectively. Then as a function of edge probability p

Af (p) = (1− p)3A∅ + 3p(1− p)2AE + 3p2(1− p)AV + p3A∆. (5)

Clearly A∅ = 0. The prefactor of three on the second and third terms, comes from the three different ways in which
each of these type of graph can be generated. Calculating AE , AV and A∆ depends on determining sets of initial
conditions that are sufficiently spaced apart to guarantee that at any moment in time, a sufficient number of nodes
are active. For the case of an edge, AE = (b − m)/r. The easiest way to see this is to consider one of the nodes
starting at the value 0. In order for this node to become active, the other node must already be active. However,
its initial value must be greater than m, since if not, then both nodes would, at a future time, simultaneously be in
the refractory or silent state. There are r possible initial states of the second node, m+ 1 of these are refractory and
silent. Of the remaining b, only those with a value greater than m can lead to activity, thus leaving b −m possible
initial states. For the case of a V , AV = (b−m)2/r2. This represents the probability that when the vertex is at state
0, the other two nodes are both active and more than m steps away from 0.

To calculate A∆, note that at any time when one node is in state 0, the other two nodes must be active in order
to sustain activity on the triangle. This means that the initial state of the three nodes must be separated by at least
b −m steps from each other. For example, if one node is at state 0, the second node at state m + 1, then the state
of the third node must be at least at 2(m+ 1), but could also be at any value up to b. In particular, this means that
4 : 2 and 5 : 3 nodes cannot support activity on a triangle since they don’t have enough bursting states relative to
refractory states. Running through all possibilities, including relevant permutations, it turns out

A∆ = 2
(1 + 2 + . . .+ b− 2m− 1)r

r3
,

which after cancellation sums to (b− 2m)(b− 2m− 1)/r2. Substituting into equation (5) and replacing f = b/r yields
equation (4). �

Fig. 1 shows close agreement between the graph of Af obtained analytically from equation (4) compared with that
from numerical simulations. Several implications arise from Proposition 1. First, since m ≥ 1, for there to be activity
on a triangle, it must be that b ≥ 4. In general, b ≥ 2(m + 1) but m + 1 = r − b. Substituting and rearranging
yields 3b ≥ 2r or f ≥ 2/3. This is the first clue that the fraction f = b/r can play a role in the monotonicity or
non-monotonicity of Af (p). In particular, if f < 2/3 , then Af (1) = 0, while if f ≥ 2/3, then Af (1) > 0. Second, it is
straightforward to calculate dAf (p)/dp. Doing so, one finds that for each f , Af (p) always has a local maximum for
p < 1. Thus Af (p) is non-monotonic when N = 3. Moreover, for m fixed, as f → 1, Af (1) → 1. It is easy to show
that in this limit, Af (p) is monotone increasing.

We considered the AM rule because it allowed us to use N = 3 which is the smallest possible graph for which a
cycle exists. A result similar to Proposition 1 could be derived for the MR rule on a minimal network of four nodes
to show non-monotonic dependence on f . We have done several numerical simulations (not shown) confirming this
to be the case.
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IV. DYNAMICS ON HETEROGENEOUS NETWORKS

We now explore how different types of heterogeneities affect the ability of a network to sustain activity. We shall
begin by proving a simple but useful result for a network consisting of two nodes, that provides a valuable insight
into larger network behavior. Then we conduct a numerical study of N = 50 nodes in which we add heterogeneity in
varying degrees into either the intrinsic dynamics of the nodes, or in the nodal interaction rules.

A. Small network motifs

Two homogeneous (r : b) nodes with a single edge can have a period r solution if and only if r ≤ 2b [17]. When
the number of active states of each neuron exceeds the number of silent and refractory states, then a single edge
suffices to guarantee the existence of a periodic orbit. For nodes connecting heterogeneous automata, additional
requirements need to be met in order to obtain periodic solutions. For example, consider a 4:2 node connected to a
5:3 node. Starting with the 4:2 node in the silent state, it is straightforward to check that there does not exist an
initial state of the 5:3 node that will lead to periodic activity. However, if a 4:2 node is connected to a 8:6 node,
then the initial state (0, 2) returns to itself after 8 steps as does the initial state (0, 6). In part, this is because eight
is multiple of four, but not five. However, a check of whether an edge between a 4:2 node and a 8:5 node supports
periodic behavior shows that it cannot. In this case, the refractory length of m = 2 of the 8:5 node is equal to the
burst length b = 2 of the 4:2 node and is too long to allow activity to be sustained. Thus, for periodic activity
to exist between a pair of nodes, two requirements must be met: the total number of states of each of these must
be multiples of one another and the refractory state of either of the nodes should not be too long compared to the
bursting state of the other node. For this network of only two nodes, there are no transients leading to a periodic
orbit. Namely, every initial state that converges to a periodic orbit lies on the orbit itself. This fact will allow us to
calculate Af . These observations are generalized in the following result.

Proposition 2: Consider an (r1 : b1) node connected by an edge to an (r2 : b2) node, with r2 > r1 and
mi = ri − bi − 1, i=1, 2. Then a period r2 solution exists if and only if r2 = nr1, where n is an integer and m2 < b1
under any of the loading rules. When the previous conditions are met and a periodic orbit exists, Af = (b1−m2)/r1.

Proof: In the case of two connected nodes, the effect of SL, MR and AM loading rules is equivalent. First assume
r2 = nr1 and m2 < b1. Consider the initial condition (0, b2). The length of the refractory state for node 2 is m2.
After m2 + 1 time steps, node 2 is in state 0, while node 1 is in a state m2 + 1 < b1 + 1. Thus m2 + 1 ≤ b1 which
implies that node 1 is still active. Therefore it can pass activity to node 2 at the next time step. After another b2
steps node 2 reverts to b2 while node 1 is in the state m2 + 1 + b2 = r2 = nr1 = 0. So the new state of the network is
(0, b2) implying the existence of a period r2 solution.

Note that if m2 ≥ b1 then the initial condition (0, b2) does not lead to a periodic solution. After m2 + 1 time steps,
node 2 is in state 0, while node 1 is in a state m2 + 1 ≥ b1 + 1 > b1 which being an inactive state cannot pass activity
to node 2 at the next time step. Similar analysis can be shown for any other initial state as well.

Next assume there exists a period r2 solution. For any initial condition (i, j), the minimum time steps required for
the solution to return to (i, j) will be the lowest common multiple (LCM) of r1 and r2. Since a period r2 solution
exists, hence LCM(r1, r2) = r2. So we can conclude r2 = nr1, where n is an integer.

Next consider an initial condition (h, b2). This state after m2 + 1 time steps becomes (h + m2 + 1, 0). Since a
periodic solution exists, so in order that the activity is passed from node 1 to node 2 which is now in 0 state, the
former should be in one of its active states, namely, 1 ≤ h + m2 + 1 ≤ b1. So, −h ≤ m2 ≤ b1 − 1 − h leading to
m2 < b1. This can be worked out for any other initial condition as well.

To calculate the fraction of initial states that lie on a periodic orbit, note the following. First, the size of the state
space is now r1r2 and the length of a periodic solution will be r2. Next, start with the (r2 : b2) node at state −m2.
Clearly the other node must already be active and must stay active for at least m2 steps. The difference b1 − m2

provides the number of initial states that this node can be in, for activity to persist. Thus, Af = r2(b1 −m2)/r1r2,
which after cancellation yields Af = (b1−m2)/r1. Note, that this formula reduces to AE(p) computed in Proposition
1 for homogeneous nodes. �

Activity continues to be sustained with the addition of a new node to an edge of the above types, namely between
two (r : b) nodes with r ≤ 2b or between (r1 : b1) and (r2 : b2) such that r2 = nr1 and m2 < b1, irrespective of its
intrinsic dynamics. Even after the addition of a third node to the network, the SL and MR loading rules continue
to be satisfied. These results suggest that the phase transitions at O(1/N2) and O(1/N) observed for homogeneous
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networks [17] should, in certain contexts, continue to exist in the presence of heterogeneity.
Although Proposition 2 considers the case of only two nodes, its real use is in understanding the behavior at large

p in a larger network. For example, in a fully connected network at p = 1, our earlier work [17] shows that for a
homogeneous network using MR, Af → 1 as N →∞ if f > 0.5. The proof of that result relies on a sufficient number
of nodes being active at any time step. Now, in a heterogeneous network consisting of, say half 6:4 and half 7:5 nodes
where r2 6= nr1, the generalization of Proposition 2 would predict that for large N , Af ≈ 0 at p = 1, since seven
is not a multiple of six. This is because a silent node would need at least half of the entire network to be active in
order to become active. Thus the problem, to some extent, can be thought of as the entire population of 6:4 nodes
connected with the entire population of 7:5 nodes. Proposition 1 then shows that the states of the active nodes must
be sufficiently separated in order to maintain the AM rule, thereby, placing a further constraint on the set of initial
conditions that converge to a periodic solution. We shall study this case numerically in IV.B.1 below.

In turn, we can now see how our small network findings in the heterogeneous (N = 2) and homogeneous (N = 3)
cases help to predict Af for all p in larger networks for the MR case. Namely, for small values of p of O(1/N2), the
random graph is dominated by edges between two nodes. Thus, we would expect activity to emerge independent of
the nature of heterogeneity, provided that some subset of nodes had r ≤ 2b. As p increases to O(1/N) and larger,
depending on the fractions f1 and f2 of the different nodes and based on the results of Proposition 1, we would expect
to see a local maximum in Af occur as cycles arise. Finally, depending again on f1 and f2 and whether or not the
conditions of Proposition 2 are met, we would predict either that Af → 0 or 1 as N → ∞. The simulation results
below will validate this intuition.

B. Networks

The results presented here are for simulations on heterogeneous networks of size N = 50 as a function of p. We
partitioned the interval [0, 1] of probability values such that for values of p close to O(1/N2) and O(1/N), a finer
partition was chosen. At each p, 104 initial conditions are randomly chosen. Each of these is evolved on the graph
under a certain interaction rule to obtain a steady state response of the network. Af is computed as the fraction
of initial conditions that lead to periodic behavior. This is repeated for 2 × 103 graph realizations and an average
value of Af is computed at each p. We adopt this methodology throughout this work unless it is specified otherwise.
The global dynamical behavior of a binary mixture of neuronal automata on ER networks mainly differs from the
homogeneous case on quantitative aspects: differences are found in terms of an increase in activity levels, a shift
in emergence thresholds. Qualitative variations can be seen as changes in monotonicity properties as well as in the
presence of non-zero dynamical activity in comparison to the corresponding homogeneous case. These findings are
illustrated below.

1. Heterogeneity in intrinsic nodal properties

Consider a network with a mixture of spiking nodes of different refractory lengths m1 and m2. For example, we
take a network of (3:1) nodes under the SL rule (here, cycles are a pre-requisite for sustained activity) and replace a
random fraction by (10:1) automata (such that, m1 < m2). The activity curves, shown in Fig. 2, undergo a transition
to Af → 1 at increasing values of p along with a gradual decrease in the activity levels as the proportion of (10:1)
nodes increases in the network. This can be explained as follows: with increasing p, a higher number of longer length
cycles are formed but the state space grows at a faster rate than the initial conditions that lead to sustained activity
(most just go to the fixed point). However, this is a finite N effect. In the limit as N → ∞, the phase transition in
Af occurs at O(1/N). Under MR loading rules, isolated cycles are required for sustained dynamical activity. Minimal
cycle (or isolated closed loops) appear for a vary narrow range of p values around O(1/N) [14] and are destroyed
completely in the limit p→ 1. As shown earlier [17], for a homogeneous network of spiking neurons with MR, Af is
close to 0 for all p and the addition of heterogeneity does not affect this (simulations not shown).

Next, we couple nonidentical bursting nodes, b1 6= b2 with m = 1 for both. We start with a network of (10 : 8)
(f > f∗) nodes and replace a fraction with 5 : 3 (f < f∗) at random sites. Note, that this heterogeneous set of nodes
satisfies Proposition 2. With the increase in the level of heterogeneity in the network, the phase transition in the Af

curves to full activity occurs at increasing values of p under the SL rule. Under the MR rule, heterogeneity changes the
monotonicity properties of Af . In particular, Af for a homogeneous network of 10 : 8 nodes is monotone increasing
since f = 8/10 > f∗, while Af for a homogeneous 5 : 3 network is non-monotone since f = 3/5 < f∗. Thus as the
proportion of 5 : 3 nodes increases, there is a concurrent decrease in Af , consequently, nonmonotonic behavior begins
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FIG. 2: Dynamics of heterogeneous ER networks (N = 50) with spiking nodes under the SL rule. Starting with a homogeneous
3 : 1 network (blue curve), as the fraction of (10 : 1) nodes increase in the network, the phase transition in activity curves Af
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nodes. Blue curve shows the activity in the homogeneous 3 : 1 network under SL rule.
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FIG. 3: Dynamics of heterogeneous ER networks (N = 50) with bursting nodes under the (a) SL and (b) MR rule. The green
curve corresponds to a homogeneous 10 : 8 network. The brown, red and green curves respectively show dynamics with 10%,
50% and 90% 5 : 3 nodes. Blue curve is the homogeneous 10:8 curve under SL in (a) and under MR in (b).

to set in and continues to become more pronounced as the network switches towards 5 : 3 type (Fig. 3). We expect
that these types of non-monotonic behaviors persist as N →∞. In that event, we expect the phase transition of Af

from 1→ 0 occurs in the graph around O(1/N) when the giant component begins to emerge, whereas, Af switching
from 0 → 1 appears to be related to the disappearance of the last isolated node around O(lnN/N), consistent with
our results in [17].

In Figure 4, we show the case of (6 : 4) and (7 : 5) nodes interacting via the AM rule. Both sets of nodes obey
f ≥ 1/2 and additionally the conditions in Proposition 1. Thus, one would expect the activity Af to emerge at
O(1/N2) as it does. But the pair does not satisfy the conditions of Proposition 2 since seven is not a multiple of 6.
Therefore, we would expect a local maximum near O(1/N) and that as p→ 1, Af → 0. This is exactly what happens.
Near O(1/N), activity in the network is supported on edges, V-like graphs and cycles. But as the graph becomes
more connected, AM becomes increasingly more difficult to be satisfied.

Another possible network of heterogeneous nodal dynamics is where spiking and bursting nodes are distributed
randomly on a network. To illustrate, we begin with a network of 4 : 1 nodes and replace a fraction of them by 6 : 4
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FIG. 4: Dynamics of heterogeneous ER networks (N = 50) with 6 : 4 and 7 : 5 bursting nodes distributed randomly in equal
proportion (50% heterogeneity). The loading rule used in this graph is Absolute Majority (AM). The jaggedness in the curve
is due to small ensemble averaging.
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FIG. 5: Dynamics of ER networks (N = 50) with 4 : 1 and 6 : 4 (f > f∗) nodes under the (a) SL and (b) MR rule. Different
colors show different fractions of heterogeneity (6 : 4), namely, blue-0%, brown-10%, red-50%, and green-90%.
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FIG. 6: Dynamics of ER networks (N = 50) with 4 : 1 and 5 : 3 (f < f∗) nodes under the (a) SL and (b) MR rule. Different
fractions of heterogeneity are shown with different colors, namely, blue-0%, brown-10%, red-50%, and green-90%.

(f > f∗) or 5 : 3 (f < f∗) nodes. Spiking nodes need cycles (appearing at O(1/N)) while bursting nodes require
edges emerging at O(1/N2) for sustained activity (monotonic for both) under SL [17]. As a result with the increase
in the proportion of 6 : 4 (5 : 3) nodes in the network, the Af curves undergo a transition to the full activity level at
lower values of p (Fig. 5(a), Fig. 6(a)). Under MR, the emergent dynamics for identical bursting nodes coupled on
a random ER network is either monotonic or nonmonotonic depending upon the value of the ratio f . On the other
hand, the non monotonic dynamics of a pure spiking network is supported by minimal cycles which get destroyed
as p → 1 [17]. When the heterogeneous network is subjected to MR rule, as the number of bursting nodes increase
in the network, we observe that the activity curves Af have small (nonzero) values in the limit p → 1. Also, even
at intermediate values of p, bursting nodes support more activity thus resulting in an overall increase in Af when
significant number of sites in the network become of the bursting type (Fig. 5(b), Fig. 6(b)).

2. Heterogeneity in nodal interaction rules

Of the various cases of heterogeneity considered so far in this work, networks with mixed interaction rules turned
out to be the most intriguing. We begin to understand their dynamics by considering first a network of identical
spiking nodes interacting with each other through SL rule. Then an increasing fraction of sites are randomly made
to interact via MR. When the network works simultaneously with both the rules, the transition point in the activity
curves shifts to higher p values and activity drops down as the proportion of nodes interacting via MR rule increases.
This makes sense as now fewer nodes are able to participate in the oscillatory behavior. Provided there remain a
sufficient number of nodes that use SL within the network, there is still some non-zero activity in the p → 1 limit.
In particular, for r : 1 nodes, as long as at least r nodes remain that utilize SL, Af 6= 0 at p = 1. To illustrate this
case, we show the example of 3 : 1 (10 : 1) nodes connected on a network and interacting via both the excitation
rules simultaneously. Note at 90% heterogeneity (green curve), there are still 5 nodes that utilize SL, therefore, in
Fig. 7(a), the activity curve for 3 : 1 nodes has a non-zero value at p = 1, while it is zero for 10 : 1 nodes (Fig. 7(b)).

When bursting nodes interact via both these excitation rules concurrently, we observe that there is not much shift
in the activity curves with the increase in the number of MR obeying nodes in the network. We show results for 4 : 2
(f < f∗) as well as 6 : 4 (f > f∗) nodes in Fig. 8. For 6 : 4 nodes we have just one monotonic curve for all levels
of heterogeneity while for 4 : 2 nodes we have overlapping curves with Af → 1 at full connectivity. This is in sharp
contrast to the behavior observed in the homogeneous case, wherein, at low values of p, activity curves for 4 : 2 nodes
under SL and MR overlap, but as p→ 1, nonmonotonicity sets in the MR curves and Af → 0 at p = 1 [17].

Near p = 1, when the fraction of nodes obeying MR increases in the network, the transient time needed to reach
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FIG. 7: Spiking nodes on a ER network: (a) (3 : 1) and (b) (10 : 1), on a network of size N = 50, under a mixture of SL and
MR rules. Here different colors denote different fraction of nodes obeying the MR rule, namely, blue-0%, brown-10%, red-50%,
and green-90%.
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FIG. 8: Bursting nodes on a ER network: (a) (4 : 2) and (b) (6 : 4), on a network of size N = 50, under SL and MR rules.

the periodic solutions also increases. Once these transients die out, all the nodes satisfying the MR become silent
and they stop contributing to the evolution of the state vector. On the remaining fraction of nodes which satisfy the
SL rule, all initial conditions lead to sustained activity. Thus, even when large numbers of nodes in the network are
interacting via the majority rule, effectively it behaves as a network of a smaller size operating only under the SL rule.
Further, we calculated the average number of active sites present in the network at any time for p = 1, at different
levels of heterogeneity, for 3 : 1 and 4 : 2 nodes. Our numerical simulations show that for 3:1 automata, at any level
of heterogeneity, the average number of active sites is essentially 1/3 of the number of nodes that use SL since each
3 : 1 automaton will on an average be active for one–third of the time. For 4:2 nodes, the number of active sites at
any time for all levels of heterogeneity is on an average half of the total number of nodes using SL. This behavior of
the dynamical activity curves is also recovered if we start with a network of nodes operating via MR and then at a
random fraction of sites interaction rule is changed to SL.

3. Heterogeneity at nodes of higher degree

Until now, our focus has been to study the effect of different types of heterogeneities placed on random sites of an
ER network. As the probability of having an edge p increases gradually from 0 to 1, the nodes in the graph pick
up connections, their degree increases and as a result the network grows from being sparse to being fully connected.
Further, in the limit N → ∞, the average degree of all the nodes in an ER graph converges to Np, however, this
result does not hold true for the finite size random graphs that we deal with in this work. Indeed, as edges grow with
increasing p, some nodes acquire higher degrees than others. In prior sections, since we placed the heterogeneities
randomly in the network, there was an equal chance of these occurring at nodes of lesser or higher degree. To
understand the impact of higher degree nodes on network dynamics, we now occupy such nodes with the various
forms of heterogeneities considered above.

In Fig. 9(a), we show how the degree distribution of the nodes of the highest five degrees changes as the edge
probability p increases, calculated for an ensemble of 104 random graphs. The y axis in these figures shows the
number of nodes of different degrees (largest, second largest and so on). As expected, at lower values of p very few
nodes have edges, while most nodes remain isolated. Note the black curve emerges around O(1/N2) consistent with
the phase transition that occurs with the emergence of the first edge. As the graph grows, the largest set of nodes
are those with the second (red), third (green), fourth (blue), fifth (magenta) and sixth (brown) highest degrees. The
graph becomes connected at O(lnN/N) from which point on the number of nodes of varying degree starts to even
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FIG. 9: Growth in the number of high degree nodes with edge probability p for N =50. Nodes with largest degree are shown in
black, followed by nodes of lower degree in red, green, blue, magenta, and brown, respectively. (a) The non-cumulative number
of higher degree nodes (b) The cumulative growth.

out. Fig. 9(b) shows a cumulative growth of the nodes shown in Fig. 9(a).
Fig. 10 shows Af in the situation where the graph started with 4 : 1 spiking dynamics and we gradually replaced

these with 5 : 3 bursting dynamics at nodes of increased degree. We can compare these graphs with Fig. 6 in which
the replacement of 4 : 1 nodes with 5 : 3 nodes occurs at random sites. In panel (a), using the SL rule, only four curves
(black, red, green and the remaining overlapping in brown) are visible. Note that the activity emerges at O(1/N2)
which is in contrast to Fig. 6a, where the activity emerges at O(1/N) (blue curve) for the homogeneous case. This
makes sense because 5 : 3 nodes can sustain activity with a single edge, whereas 4 : 1 nodes require cycles. Thus by
placing the heterogeneity specifically at a site with higher degree, the graph begins to exhibit sustained activity at
lower edge connection probability. Further, it also shows that the activity in the network is almost entirely driven
by the sets of nodes with the two highest degrees, a result that cannot be discerned from Fig. 6a. Figure 10b shows
results when the MR rule is utilized. Here again the emergence of activity is at O(1/N2), however, in contrast to
the SL rule, the activity is not restricted to the sets of nodes with the two highest degrees, but relies on nodes of all
degrees.

Next, we generate activity curves with spiking nodes using the majority rule at sites with higher degree. In Fig.
11(a), we see that the transition point in Af shifts to higher p values when heterogeneity is increased at high degree
nodes, but the shift here is more gradual and the activity levels are also higher when compared to Fig. 7(a). This can
be understood by considering Fig. 9(b). Note that at large p ∈ (0.1, 0.8), only about 20 or so nodes (brown curve)
are the ones at which MR is operating. The remaining 30 or so nodes still use SL, for which 3 : 1 nodes can sustain
activity, and therefore Af remains large. When the nodes are of 10 : 1 kind instead, Fig. 11(b), the dynamical curves
are further shifted to higher p values when compared to panel (a), but the activity largely persists in contrast to Fig.
7(b), due to similar reasons as stated above, however, it does converge to 0 as p→ 1.

There are situations where introducing heterogeneity at higher degree nodes yields no qualitative difference from
cases where the heterogeneity was introduced at random. For example, Fig. 12 shows results for 10 : 8 and 5 : 3
nodes that is to be compared with Fig. 3. Under SL, the activity curves in panel (a) of each figure are qualitatively
the same. This is because both 10 : 8 and 5 : 3 are bursting nodes, so wherever they appear in the graph, a single
edge is sufficient to sustain activity. Similarly, under MR, Fig. 12b shows that as more nodes use 5 : 3, Af becomes
non-monotonic (brown curve for example), consistent with Fig. 3b (green curve).

Together, these results show that restricting heterogeneity to higher degree nodes can increase the chance of the
graph to sustain activity. Whether it does or not depends on the type of heterogeneity introduced and the type of
loading rule used for the interactions.

C. Boolean Lyapunov Exponent and the semi-annealed process

The random networks discussed in this work are quenched systems, namely, once the graph is generated at a
certain p value and the dynamical update rule is chosen, these remain fixed throughout the evolution of dynamics
on these graphs (quenched randomness). The dynamics (Af ) undergoes phase transitions at critical points which are
closely related to emergence of certain structural features in the architecture. For doing a stability analysis in such
graphs, Derrida and Pomeau proposed an “annealed” approximation [22] and modification of the same by Pomerance
et al. [20] leads to a “semi–annealed” approximation. In the former, random choices of network edges and update
rules are made at every time step. In the latter, while the architecture is fixed, only the update rules are randomly
picked up at every time step. Two nearby initial conditions are co–evolved in an annealed (semi–annealed) system,
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FIG. 10: Dynamics of ER networks (N = 50) of 4 : 1 nodes with 5 : 3 at higher degree nodes. color scheme as in Fig. 9.
Activity emerges at O(1/N2) (a) Under SL, activity is driven by the sets of nodes of the two highest degree. (b) Under MR,
activity is driven by all nodes.
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FIG. 11: Dynamics of ER networks (N = 50) of (a) 3 : 1 nodes and (b) 10 : 1 nodes, operating under mixed loading rules with
nodes using MR at higher degree nodes and SL at the others. Color scheme as in Fig. 9. Af remains bounded away from 0
over a range of p ∈ (0.1, 0.8) because a large number of nodes continue to use SL.

whether their mutual separation grows or decreases with time determines the stability of the underlying system. The
hypothesis is that the stability of an annealed (semi–annealed) system, which can be computed analytically, is a good
approximation for the stability of the related quenched network [22]. The Boolean Lyapunov exponent (BLE) Λ [24],
a measure based on these approximations provides a useful characterization of the dynamics. This measure of the
rate of separation of two nearby orbits is defined as follows [26]. A reference state of length N is perturbed randomly
to create a new state vector, and these states are then evolved simultaneously for a finite number of steps T , the
initial and final Hamming distances being denoted din and dout respectively. For the kth such perturbation, the rate
of divergence, λk, is

λk =
1

T
ln
doutk
dink

. (6)

The Boolean Lyapunov exponent is obtained as an average rate of expansion over a large number of realizations,

Λ = 〈λi〉. (7)

Both Λ and the activity curves Af have the same functional dependence on p for homogeneous or heterogeneous
networks under both interaction rules; results are presented in Fig. 13. This can be understood as follows. Consider a
homogeneous network of spiking r : 1 nodes under the SL rule with N sufficiently large. If p is small, then Af = 0. To
compute λi for this case, any trajectory, including the reference trajectory, should converge to the fixed point σ = 0.
Thus douti = 0, we define λi = −50 for this case. Thus Λ is proportional to some predefined negative number if p is
sufficiently small. Alternatively, when p = 1 and the graph is complete, we know that the basin of attraction of any
periodic orbit is precisely the orbit itself [17], namely, there are no transients when approaching a periodic solution.
Now, if we consider a reference trajectory that lies on a periodic orbit, a perturbation i of this trajectory of size
dini

can lead to two possibilities: (a) it will lie on a different periodic orbit (including a translation of the reference
trajectory). In this case, because there are no transients, douti = dini

. Therefore, λi = 0. (b) The perturbation will lie

on a trajectory that converges to the fixed point σ = 0. In this case, douti ≥ r − 1. Thus, 1
T ln (r−1)

dini
≤ λi < 0, hence,

giving a lower bound to BLE. As N grows increasingly, the phase space of initial conditions lying in the basin of
attraction of σ = 0 decreases, thereby, reducing the likelihood of a negative contribution of λi to the BLE. This implies
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FIG. 12: Dynamics of ER networks (N = 50) of 10 : 8 nodes with 5 : 3 at higher degree nodes, under (a) SL and (b) MR. Color
scheme as in Fig. 7.
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FIG. 13: Boolean Lyapunov exponent as a function of p for homogeneous and heterogeneous ER networks. Ensemble size: 50
graphs and 50 initial conditions. (a) and (b) show Λ vs p behavior for homogeneous 3 : 1 and 5 : 3 networks under SL and MR
respectively while (c) captures this behavior for 4 : 1 network under SL rule with brown-10%, red-50%, and green-90% nodes
occupied by 5 : 3 heterogeneity.

that for N large enough, at p = 1 for spiking nodes with SL interaction rules, Λ = 0. However, this explanation does
not provide a rationale for the phase transition that the BLE undergoes around O(1/N), but it is not unreasonable
to expect the BLE to be a monotone increasing function of p as more and more initial conditions fall out of the basin
of attraction of σ = 0.

In Figs. 14, we present numerical calculations of the Hamming separation of two co–evolving initial conditions on a
random graph using a semi-annealed approximation. For these simulations, at an edge connection probability p, the
intrinsic dynamics of the node as well as the interaction rule are fixed. We start with two initial conditions, one being
the reference trajectory. At each time step i, we generated a new random graph and evolved the existing state of the
two vectors for one step, followed by calculation of their Hamming distance (di) normalized by the number of nodes,
before repeating the process. This algorithm is repeated over several time steps and we arrive at the quantity dinf .
An ensemble average is computed over a number of reference trajectories and the entire process is repeated for each
p ∈ [0, 1]. As can be seen, this semi-annealed approximation produces graphs that are qualitatively similar in shape
and have phase transitions at similar orders of p as both the BLE (Figs. 13(a) and (b)) and activity curves Af ([17]).
This suggests that some analytic headway may be achieved in calculating Af for large networks using techniques from
[20, 21].

While the BLE (Λ), the semi-annealed approximation (dinf ) and Af look similar, the manner in which we make
their computations is different. The activity Af measures the size of the subset of the state space that converges to
nontrivial periodic solutions. As such, it measures the long term behavior of an individual trajectory. The BLE, on
the other hand, compares a short term behavior of nearby trajectories in order to predict the asymptotic dynamics
displayed by the system. It calculates how quickly two nearby trajectories converge or diverge from one another,
thus often used as a measure to detect the presence of chaos, which is surely not a feature of the finite size state
space models considered here. Finally, the semi-annealed approximation calculation measures short-term divergence
or convergence under the assumption that the network is following the average behavior of trajectories at each time
step. Despite the differences in how these three measures are calculated, they appear to convey similar information.
We do note, however, that calculation of the BLE is computationally more expensive as more sample trajectories are
needed to calculate average behavior. Similarly, the semi-annealed approximation requires the generation of a new
random graph at each time step adding to its computational cost. Here, we compensate by averaging over a smaller
ensemble size, despite which fairly smooth transition curves are obtained (see Figs. 13 and 14 ).
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FIG. 14: Semi–annealed Approximation: Hamming distance between two co–evolving trajectories (averaged over 500 reference
trajectories) as a function of p for homogeneous automata networks of size N=50: (a) 3 : 1 nodes under SL and (b) 5 : 3 nodes
under MR.

V. RESULTS AND DISCUSSION

Heterogeneous networks of interacting automata [27–29] share many of the dynamical features of the homogeneous
case. In particular, structural features and motifs of the network are closely related to phase transitions in the
dynamical activity: the thresholds for the emergence of the first edge (for p ∼ O(1/N2)), cycles (for p ∼ O(1/N)) and
for the disappearance of the last isolated node (p ∼ O((lnN)/N)) demarcate various phase transitions in sustained
activity Af .

The discrete dynamics studied in this paper trace their origins to study of Random Boolean Networks of Kauffman
[8]. Furthermore, the specific nodal interaction rules one could consider on such a network are addressed in a large body
of literature. For example, our SL interaction rule can be found in the earlier work of Greenberg and Hastings [30],
where the authors study lattice dynamics for nodes coupled by nearest neighbor interactions. They were interested
in finding spatially inhomogeneous solutions, in particular, spiral waves of activity on the graph. They show how to
identify a small network motif, in terms of initial values on the graph, that lead to spiral waves. The other interaction
rule that we use, MR, is closely related to the voter model studied by Moore [31] where the state of each node is
determined by majority vote of its neighbors. Moore showed that for a restricted set of initial conditions, the voter
model is equivalent to calculating the probability of a transition in a zero-temperature Ising model. The main interest
in this paper is to quantify whether it is possible to compute the asymptotic behavior of the model any faster than
through direct simulation. While the emphasis of Moore’s work is on solving a theoretical problem in computer
science, the parallels to our work are worth noting.

The introduction of heterogeneity affects the thresholds that are relevant under different circumstances, and can
be used to reduce the functional number of nodes that are able to participate in a specific dynamical activity. For
example, when both the SL and MR loading rules operate, and the graph becomes more connected (as p increases)
only those nodes that interact through the SL rule can participate in periodic activity; all other nodes eventually
become silent. In a biological context, this is a type of plasticity whereby connections between neurons weaken when
they are not simultaneously active. While this type of plasticity occurs in Hebbian synaptic connections [32], it is
also postulated to occur in networks of developing neurons coupled by gap junctions [33].

Heterogeneity can also increase activity Af so that the transition occurs at p ∼ O(1/N2) rather than O(1/N) if the
heterogeneous node has higher degree; this can provide insight into how larger scale-free networks [15] of neurons might
behave. Analyzing phase transitions in networks with discrete nodal dynamics has received considerable attention
[21, 34]. To this end, several techniques can be found in the literature. In particular, we make use of the Boolean
Lyapunov exponent and numerical evidence suggests that the shape of activity curve Af along with its accompanying
phase transitions can be inferred from the Boolean Lyapunov exponent. This observation could be found useful while
analyzing data from other cellular automata models [35, 36]. The roots of the BLE can be found in the works of
Derrida et al. [22, 23]. It is built upon the annealed approximation, wherein, instead of working with the quenched
network, annealed configurations related to the system are generated to capture the critical points in the model.
Much of the analytic work done in the semi-annealed approximation is on tree-like graphs [21] or for those that can
be described using a threshold contact process [37]. The critical points in the activity curve Af in our network are
related to emergence of certain structural features, which are well established in the literature of random graphs [14].
It is of interest, and remains an open problem, to analytically approximate the shape and phase transitions in Af .
The annealed and semi-annealed approximations represent one possible avenue to do so.

Several other studies focus on the relationship between topology and emergent dynamics for cellular automata
networks. In particular, Larremore et al. [38] study the impact of heterogeneity in nodal dynamics on network
response. In contrast to our deterministic update rules, their work deals with a probabilistic model, wherein the
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dynamics and architecture are coupled through the elements of the adjacency matrix (Aij ∈ [0, 1]), which appear in
the update rules from silent to excited state. The largest eigen value of Aij serves as an order parameter to detect the
transition from subcritical (a quiescent network) to supercritical regime (a network is self-sustained activity). Similar
to our work, the authors consider heterogeneities in the refractory period of nodes. They find that if the number of
refractory states is increased in a correlated manner, then the level of activity in the graph is likely to decrease. Our
work is consistent with this finding where we showed that both the bound f ≥ 1/2 for the fraction of bursting states,
and the ratios f1 and f2 of the heterogeneous nodes plays a role in determining network dynamics. In our case, it is
not just that an increase in the duration of the refractory state may change the dynamics, but it is also a function of
the specifics of how f1 changes relative to f2.

Neuronal networks in nature are intrinsically heterogeneous, with individual neurons having the capability of firing
at frequencies that range from very slow (0.5 to 4 Hz [39]) to very fast (∼ 200 Hz and beyond [40]) oscillations. Some
neurons are not intrinsically active but are excitable. The connection between the geometry of the heterogeneous
neuronal network and its ability to sustain activity has been explored in the present work. It would be interesting
to examine whether the inclusion of inhibition permits activity to be sustained; in a related model [41] it was shown
that inhibition can create sustained activity in otherwise quiescent excitable systems.

Neurons with different types of intrinsic properties often interact within the same neuronal network [42]. From the
modeling perspective, the introduction of oscillatory, rather than excitable nodes, is another form of heterogeneity to
consider. Doing so would then allow us to study a network’s ability to sustain oscillations as a competition between
the drive provided by the oscillatory nodes compared to the load provided by the passive excitable nodes. Some of
these directions will be explored in future work.
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