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Generalized synchrony of coupled stochastic processes with multiplicative noise
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We study the effect of multiplicative noise in dynamical flows arising from the coupling of stochastic processes
with intrinsic noise. Situations wherein such systems arise naturally are in chemical or biological oscillators that
are coupled to each other in a drive-response configuration. Above a coupling threshold we find that there is a
strong correlation between the drive and the response: This is a stochastic analog of the phenomenon of generalised
synchronization. Since the dynamical fluctuations are large when there is intrinsic noise, it is necessary to employ
measures that are sensitive to correlations between the variables of drive and the response, the permutation
entropy, or the mutual information in order to detect the transition to generalized synchrony in such systems.
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I. INTRODUCTION

The synchronization of rhythms is an important and
extensively studied phenomenon that is ubiquitous in
nature [1] and can arise in linear as well as nonlinear
systems, for weak as well as strong coupling, and when
the dynamics is periodic as well as when it is chaotic or
otherwise complex [2–4]. This makes synchrony one of the
most widely observed instances of emergent and cooperative
behavior. Technological applications of synchronization are
numerous, ranging from signal processing and communication
protocols [5,6] to information transfer in multiprocessors [7].

Over the past decades the notion of synchrony has
expanded to include the situation when distinct signals
become strongly correlated without becoming identical. This
is the case of the so-called generalized synchronization (GS),
which was first described in the context of a skew-product (or
one-way coupled) system [8]: A response system is coupled
to the output of the drive, and, for sufficiently strong coupling,
the output of the response is uniquely defined by the drive.
Consider, for instance, the following system:

ẏ = Fy(Py,y), (1)

ẋ = Fx(Px,x) + ε(y − x), (2)

where the subscripts y and x denote the drive and the response
respectively, the dynamical variables of either system are
denoted by y(t) ∈ Rn and x(t) ∈ Rm, Fy and Fx specify the
respective n- and m-dimensional flows, and Py,x are the sets
of parameters in the two systems. The coupling considered
above is linear (diffusive), but the discussion below applies
to other forms of coupling as well. GS is said to occur in the
system when there is a unique functional relationship,

x = �[y], (3)

between the drive and response variables. Depending on
whether � is differentiable, the generalized synchronization
is termed as strong or weak [9,10], and numerous studies have
examined the nature and characteristics of GS in a variety of
systems, including those with nonlinear coupling.

In a number of situations of practical importance, however,
the microscopic dynamics is governed by a set of coupled

stochastic processes [11–14], and it is therefore of interest
to examine how these ideas of synchrony can be extended to
dynamical systems in which fluctuations cannot be suppressed.
The present work addresses this issue in the context of coupled
microscopic chemical reactions, wherein the dynamics is
subject to both intrinsic and extrinsic noise and the variables
therefore can undergo large fluctuations. Such a situation is
common, for instance, in biological reactions at the cellular and
subcellular levels. The methods of analysis that are applicable
to deterministic dynamical systems [1] cannot be easily
adapted in a straightforward manner to stochastic systems.

In the present work, we consider two sets of coupled
chemical reactions that interact with each other. Our interest
is in the manner in which the two subsystems become
correlated, in a manner that is analogous to synchrony. We
also approximate the master equation that describes this
system by the Langevin equation [15] and study the dynamics
of this system in which the noise that appears is multiplicative.
One consequence is that the noise cannot be “switched off”
except in the thermodynamic limit, and thus we seek measures
that can assess the degree of synchrony accurately in systems
that are dominated by noise.

The basic framework of our study is outlined in Sec. II, and
application is made to model coupled stochastic processes.
The examples we consider are chosen to correspond to
well-known dynamical systems such as the Brusselator
and the Lorenz system, primarily so the dynamics is well
understood in the thermodynamic limit. We calculate
correlations and information-theoretic measures to study
the transition. The transition to generalized synchrony in case
of chemical oscillators is described in Sec. III. We apply the
above-discussed order parameters to these coupled systems
in order to detect the transition in finite systems. We conclude
with a discussion and summary in Sec. IV.

II. STOCHASTIC DRIVE-RESPONSE SYSTEMS
WITH MULTIPLICATIVE NOISE

The effect of external additive noise has been studied in
detail in the context of generalized synchrony [16,17]. Our
interest here is on the nature of intrinsic noise, such as might
arise in systems far from the thermodynamic limit. There has
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been a resurgence of interest in such “small” systems in view of
the fact that the biological cell is small while being amenable
to detailed study. In such systems, the various processes can
be depicted as a series of m coupled chemical reactions,

R1
c1−→ P1

R2
c2−→ P2

...

Rm

cm−→ Pm, (4)

where Ri, Pi , and ci represent, respectively, the reactant and
product species and rates of the ith reaction. Depending on the
nature of the different reactions and the species involved, one
typically arrives at a set of coupled differential equations,

ẋ = fx(x) + gx(x)√
V

ξx(t) + . . . , (5)

where the elements of the vector x are the concentrations of
the various species involved in the above reactions [Eq. (4)].
The functional form of the deterministic part, fx , as well as
that of gx which comes from the noise part, depends on the
specifics of the reaction scheme. It should be noted that one is
essentially dealing with a set of coupled stochastic processes,
and in the limit of the volume V → ∞, one has the law of mass
action [18], obtaining a set of coupled differential equations
from a set of coupled chemical reactions [19].

Our interest in the present work focuses on the coupling
between two distinct systems of coupled stochastic processes.
While an explicit example will be given below, it should be
noted that this is a not uncommon occurrence within the
cell, when two or more regulatory pathways overlap and/or
interfere [20]. This can result in the resulting differential
equations being coupled, leading to unexpected correlations in
the different variables, and, indeed, a form of synchrony [1].

A. The Lorenz-Brusselator system

As an example of the scenario, we consider the so-called
Brusselator model that can be derived from the set of
chemical reactions described in Eq. (A1) (Appendix) [21].
The corresponding chemical Langevin equation (CLE) can be
written as follows [15]

ẋ1 = f1(x1,x2) + g1(x1)√
V

ξ1(t) + g2(x1,x2)√
V

ξ2(t)

ẋ2 = f2(x1,x2) + g2(x1,x2)√
V

ξ2(t), (6)

where the ξi terms represent δ-correlated white noise, 〈ξi(t)〉 =
0 with 〈ξi(t)ξj (t ′)〉 = δ(t − t ′)δij ,i,j = 1,2, The quantities
fi(x), and gi(x),i = 1,2 are defined as

f1(x) = c1 − c2x1 + c3x1(x1 − 1)x2/2 − c4x1

f2(x) = c2x1 − c3x1(x1 − 1)x2/2

g1(x) =
√

[c1 + c4x1]

g2(x) =
√

[c2 + c3(x1 − 1)x2/2]x1. (7)

A similar set of equations for the chemical reactions can be
written, and these lead to the Langevin-Lorenz system [22]

[Appendix; see Eq. (A2)],

ẋ ′
1 = −σx ′

1 + σx ′
2 + h1(x′) + ε(x1 − x ′

1)

ẋ ′
2 = −x ′

1x
′
3 + rx ′

1 − x ′
2 + h2(x′)

ẋ ′
3 = x ′

1x
′
2 − bx ′

3 + h3(x′) (8)

with the additional terms involving noise being [15]

h1(x′) = 1√
V

{−
√

|σx ′
1|η1 +

√
|σx ′

2|η2
}

h2(x′) = 1√
V

{−
√

|x ′
1x

′
3|η3 +

√
|rx ′

1|η4 −
√

|x ′
2|η5

}

h3(x′) = 1√
V

{√|x ′
1x

′
2|η6 −

√
|bx ′

3|η7
}

(9)

as can be derived in a straightforward manner. The diffusive
coupling term in Eq. (8) represents the diffusion of the species
(represented by x1) from one system to the other. The noises
ηi and ξj are, of course, independent, and, further, 〈ηi(t)〉 = 0
with 〈ηi(t)ηj (t ′)〉 = δ(t − t ′)δij .

In order to assess the effect of the stochastic drive it is
customary to compare the response dynamics with that of
another copy [23]. Thus the same (Brusselator) drive can
be coupled to a second response system that is termed the
auxiliary unit. When the stochastic Brusselator drive couples
to the Lorenz response and the auxiliary unit which is another
replica of the response, one obtains a set of coupled stochastic
equations, namely Eqs. (6) and (8), together with

ẋ ′′
1 = −σx ′′

1 + σx ′′
2 + h1(x′′) + ε(x1 − x ′′

1 )

ẋ ′′
2 = −x ′′

1 x ′′
3 + rx ′′

1 − x ′′
2 + h2(x′′)

ẋ ′′
3 = x ′′

1 x ′′
2 − bx ′′

3 + h3(x′′)

h1(x′′) = 1√
V

{−
√

|σx ′′
1 |η8 +

√
|σx ′′

2 |η9
}

h2(x′′) = 1√
V

{−
√

|x ′′
1 x ′′

3 |η10 +
√

|rx ′′
1 |η11 −

√
|x ′′

2 |η12
}

h3(x′′) = 1√
V

{√|x ′′
1 x ′′

2 |η13 −
√

|bx ′′
3 |η14

}
. (10)

Note that there are several independent, multiplicative noise
terms, and this is the main distinction between the present
coupled stochastic system and deterministic systems with
additive noise [16,17,24,25].

Simulations for the system with noise are carried out in
the usual manner, integrating the equations of motion using a
modified Euler’s method [26] or a similarly modified fourth-
order Runge-Kutta scheme. Since the coupling is between two
very dissimilar systems as evidenced by the reaction schemes
[Eqs. (A1) and (A2)] or the derived differential equations
[Eqs. (9) and (10)], it is useful to judge the extent to which the
variables in the response system are uniquely determined by
the drive.

Shown in Fig. 1 are the attractors generated by the
drive-response system, projected onto the x1-x ′

1 and x ′
1-x ′′

1
planes, where Fig. 1(a) and Fig. 1(b) are the projections
for ε = 0, implying that there is no correlation between
the drive-response and auxiliary units. If one increases the
coupling, Fig. 1(c) and Fig. 1(d) for ε = 0.5, the two units
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FIG. 1. Phase-space plots for Eqs. (6), (8), and (10) as a function
of the coupling. Attractor in the x1-x ′

1 plane for the drive response
system for the parameter values c1 = 2.25 × 104, c2 = 50, c3 = 5 ×
10−5, c4 = 25, V = 0.1, σ = 10, b = 8/3, r = 28 at (a) ε = 0 and
(c) ε = 0.5. Similar plots in the x ′

1-x ′′
1 plane for the response and

auxiliary at (b) ε = 0 and (d) ε = 0.5.

are clearly synchronized. Since the response and the auxiliary
unit are in complete synchrony [see Fig. 1(d)], the systems
in the drive response configuration are in weak generalized
synchrony [10].

The synchrony of the drive response system with increase in
the coupling values can be seen in Fig. 2 as well. At ε = 0 and
ε = 0.05 [Figs. 2(a) and 2(b)], the time series of the drive and
response are uncorrelated. As the coupling increases the time
series of the drive and response as well as the response and
auxiliary unit begins to synchronize [Fig. 2(c)] and at large
coupling ε = 0.5, the auxiliary units are strongly correlated
indicating the state of GS [Fig. 2(d)].
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FIG. 2. Time series of the drive (solid black line), response
(dotted blue line), and the auxiliary unit (dashed red line) Eqs. (6), (8),
and (10) for the parameter values c1 = 2.25 × 104, c2 = 50, c3 =
5 × 10−5, c4 = 25, V = 0.1, σ = 10, b = 8/3, r = 28 at (a) ε = 0,
(b) ε = 0.05, (c) ε = 0.1, and (d) ε = 0.5.
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FIG. 3. Correlation for the oscillatory dynamics Eqs. (6), (8),
and (10) for the parameter values c1 = 2.25 × 104, c2 = 50, c3 =
5 × 10−5, c4 = 25, V = 0.1, σ = 10, b = 8/3, r = 28 between
drive and response (dashed line) and between the response and the
auxiliary unit (red circle).

It is preferable, however, to examine the degree of correla-
tion between the response and its copy, the auxiliary response,
through the quantity

ρxix
′
i
= lim

t→∞
[〈xi(t)x ′

i(t)〉 − 〈xi(t)〉〈x ′
i(t)〉]

σxi
σx ′

i

, (11)

where the σ ’s are the standard deviations for the signals
xi(t) and x ′

i(t), respectively, and provide a good measure
of the correlatedness of two variables xi and x ′

i . If ρxix
′
i

is
close to 1, then the two systems can be considered to be
strongly correlated while uncorrelated variables will have ρxix

′
i

significantly below 1. This measure is thus a proxy for the
correlations between the drive and the response.

The variation of correlation with coupling is shown in Fig. 3.
In this system, there is phase synchronization [1] between
the drive and response prior to GS, and this shows up as a
kink in the curve at ε = 0.2. Since the correlation between
the response and the auxiliary unit is high, this feature is not
visible in the corresponding curve in Fig. 3 (see, however,
Fig. 4 below).

B. Information-theoretic measures

Measures based on information theory such as the mutual
information (MI) are sensitive to details of the dynamics
that do not manifest themselves in simpler entities such as
the correlation function [27,28]. MI measures the general
dependence of two variables, and therefore it provides a
more robust measure to study stochastic time series than
the cross-correlation function, which only measures linear
dependence.

Consider a set of N bivariate measurements ui = (xi,yi)
that are assumed to be independent and identically distributed
realizations of random variable Z = (X,Y ) with density
μ(x,y). The marginal densities of X and Y are, respectively,
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FIG. 4. Mutual information for the system given by Eqs. (6), (8),
and (10) for the parameter values c1 = 2.25 × 104, c2 = 50, c3 =
5 × 10−5, c4 = 25, V = 0.1, σ = 10, b = 8/3, r = 28 between
drive and response (dashed line) and between the response and the
auxiliary unit (red circle).

μx(x) = ∫
dyμ(x,y) and μy(y) = ∫

dxμ(x,y), and the MI is
defined by

I (X,Y ) =
∫

dx

∫
μ(x,y) ln

μ(x,y)

μx(x)μy(y)
dy. (12)

A computationally efficient method to evaluate the MI is to
cover the phase space in bins of finite size. This can be
approximated by the relation

I (X,Y ) =
∑
i,j

p(i,j ) log
p(i,j )

px(i)py(j )
, (13)

where px(i) = ∫
i
dxμx(x), py(j ) = ∫

j
dxμy(y), and

p(i,j ) = ∫
i
dx

∫
j
dyμ(x,y). (Note that

∫
i

indicates that the
integral is taken over bin i.) Numerically, if nx(i)[ny(j )] is
the number of points falling in ith bin of X [j th bin of Y ]
and n(i,j ) is the number of points falling in their intersection,
then we approximate px(i) ≈ nx(i)/N , py(j ) ≈ ny(j )/N ,
and p(i,j ) ≈ n(i,j )/N , where N denotes the total number of
points in a bin.

As shown in Fig. 4, the MI increases with the increase
in coupling. At lower coupling values the MI between the
drive-response and response-auxiliary unit is low, which
increases and finally becomes constant as one increases the
coupling between the two systems. The higher values of MI at
larger coupling values clearly capture the onset of generalized
synchrony in the system.

If the noise is additive and of low intensity, then Lyapunov
exponents can also be computed in the usual manner as a
function of the coupling for the drive-response system [25].
However, this is not possible here and we therefore discuss the
use of the permutation entropy (PE), a complexity measure
that can be easily calculated for any time series [29]. In model
systems it has been observed that the PE behaves very similarly
to the Lyapunov exponent over a wide range of parameter

values, which suggests that the PE can be used as a proxy for
the Lyapunov exponent.

We briefly recall the methodology outlined in Ref. [29].
Given a stationary time series {xt }, which attains a finite
number M of values, the classical source Shannon entropy h

lies in the interval [0, log M]. When {xt } takes arbitrary values,
it is simpler to coarse grain the series and replace the discrete
values by a symbolic sequence {st } with a finite number of
symbols. The source entropy for the symbolic sequence st is
computed in the usual manner [29]. For a given series one
studies all n! permutations π for which the relative frequency
is given by

p(π ) = t |t � T − n,(xt+1,...,xt+n) has type π

T − n + 1
. (14)

The permutation entropy of order n � 2 is defined as

H (n) = −
∑

p(π ) log p(π ), (15)

where the sum runs over all the n! permutations π of order n.
The permutation entropy per symbol of order n is

hn = H (n)/(n − 1) (16)

since the time series hn typically changes with time. For two
nearly identical time series or for two time series in synchrony,
although one cannot expect them to have identical PE, the
manner in which these change (the trend) should be identical
since the two time series are in synchrony. One can transform
the trend into a symbolic string to estimate the correlation and
thereby construct an order parameter γ [30].

For a time series of length N , we divide these into equal
number of smaller intervals, say, n1,n2, . . . such that

∑
i ni =

N . The value of ni as well as i should be large enough to
avoid statistical errors. Thus we have a set of permutation
entropies {hi} corresponding to each interval of the time series.
Consider a variable ci such that ci = 1 if hi > hi−1 and ci =
−1 otherwise for one time series. A similar sequence can be
obtained for the other time series, c′

i . The order parameter
γ [30] is then defined as

γ = 〈cic
′
i〉, (17)

where the angular brackets denote a time average. For
independent time series, γ should be approximately zero, and
close to unity if these are synchronized.

The onset of GS is indicated by an abrupt change in this
order parameter; see Fig. 5 for the transition in case of the
drive-response system. Subsequent to the transition, γ does
not reach unity, implying that the degree of correlation (or
synchrony) is nontrivial but not high due to the presence of
noise. A similar transition occurs for the response and the
auxiliary unit as shown in Fig. 5.

The order parameter γ shows a transition that is gradual
and monotonic as a function of ε. In Fig. 5, which corresponds
to the oscillatory state of the oscillator, the order parameter
captures the transition at certain value of the coupling strength.
Since the γ values are well below unity, implying a regime
of weak generalized synchrony. The kink at ε = 0.2 again is
indicative of phase synchrony between the two units.
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FIG. 5. Order parameter γ calculated by using the per-
mutation entropy for the system given by Eqs. (6), (8),
and (10) when the dynamics is oscillatory for the parame-
ter values c1 = 2.25 × 104, c2 = 50, c3 = 5 × 10−5, c4 = 25, V =
0.1, σ = 10, b = 8/3, r = 28 between drive and response, i.e., γxx′

(dashed line) and the response and the auxiliary units γx′x′′ (red circle).

III. APPLICATION: COUPLED CHEMICAL
OSCILLATORS

We consider a situation where the response and drive
are both chemical oscillators, namely when Xi ,i = 1, 2
are stochastic signals. In a number of natural settings, the
noise cannot be removed and therefore the coupling of
intrinsically noisy dynamical systems [19] is of particular
interest. Earlier studies have studied the synchronization of
chaotic systems driven by “common” white noise [24,25],
namely when the systems themselves are uncoupled but are
influenced by the same background noise. GS in a noise-driven
chaotic system with a linear synchronization function has been
theoretically studied by constructing a response function using
Lyapunov stability theory [31] and this technique was used to
explore the existence of GS in chaotic systems on complex
networks [32].

Since we are dealing with stochastic systems, the usual
auxiliary system approach cannot be applied exactly, because
the response and its auxiliary unit cannot be identical. We
implement various techniques to detect GS in such a situation;
these include correlation coefficients and the Mutual Informa-
tion. Quantitative characterization of the dynamics is made
via methods used in the study of complete synchronization in
stochastic systems [29,33–35].

The coupled system can be written in terms of the “chem-
ical” reactions described in Eqs. (A1) and (A2) (Appendix)
together with

X′
1

ε−→ S X1
ε−→ X′

1, (18)

where species of the response will now be denoted by
primed variables. Coupled auxiliary units can be produced
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FIG. 6. Autonomous dynamics of (a) the drive, i.e., Brus-
selator Eqs. (A1), and the auxiliary unit at the parameter set
c1 = 5, c2 = 0.025, c3 = 5 × 10−5, c4 = 5 and (b) the response,
i.e., Lorenz Eqs. (A2), and the auxiliary unit for the parame-
ter set c′

1 = 900, c′
2 = 10, c′

3 = 28, c′
4 = 30, c′

5 = 1, c′
6 = 1, c′

7 =
810, c′

8 = 30, c′
9 = 30, c′10 = 10, c′

11 = 1, c′
12 = 8

3 at V = 100.

by appending the following reactions in Eq. (A2),

X
′′
1

ε−→ T X1
ε−→ X

′′
1, (19)

where the species of the auxiliary unit will be denoted by X′′
1 ,

X′′
2 , and X′′

3 .
In the thermodynamic limit, the corresponding mass-action

(deterministic) reaction rate equations are given by Eqs. (6)
and (8) in the limit V → ∞.

Carrying out the simulations using the stochastic simulation
algorithm (SSA) [36], the attractors for the uncoupled chem-
ical oscillators is described in Fig. 6(a) for the Brusselator
and Fig. 6(b) for the Lorenz system depicting two entirely
different dynamical systems that are intrinsically stochastic
and are coupled through a drive-response relationship. We
consider the set of parameter values where the dynamical
behavior of the two systems is oscillatory. Figure 8 shows
different regimes.

We now calculate the correlation between the two variables,
i.e., x-x ′ (drive-response) and x ′-x ′′ (auxiliary units) using
Eq. (11).

As shown in Fig. 7, the correlations grow with increase
in coupling. As the coupling increases, we observe that
there is an increase in the correlation of the two systems
(ρXX′ ). The coupling value after which the correlations remain
constant indicates the regime of GS. This observation is further
strengthened by the fact that the correlation between the
response and the auxiliary unit, ρX′X′′ , becomes close to unity
at the same coupling values. Since the intrinsic time scales
of oscillation of the two types of oscillators differs (although
not drastically so), the response and the auxiliary being the
same type of system become more correlated, while a lower
level of correlation is achieved between the drive-response.
The time series, shown in Fig. 8 for the drive-response and
auxiliary unit, shows this quite dramatically. When there is
no coupling [Fig. 8(a)] or it is very small [Fig. 8(b)], the
time series of the units are completely uncorrelated, while the
correlation between them increases as we increase the coupling
[Fig. 8(c)] and, finally, the units are in synchrony for strong
coupling [Fig. 8(d)] and subsequently remain in GS.
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FIG. 7. Correlation for the system given by Eqs. (A1) and (A2),
and the auxiliary unit for the parameter values c1 = 5, c2 =
0.025, c3 = 5 × 10−5, c4 = 5, c′
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between drive and response, i.e., ρXX′ (dashed line) and between the
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A. Information-theoretic measures

In this section we again employ the information-theoretic
measure, the Mutual Information [Eq. (13)], to study synchro-
nization between the coupled units.

As shown in Fig. 9, the MI first increases with the increase
in coupling. At lower coupling values the MI between the
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FIG. 8. Time series at different coupling values for the parameter
set c1 = 5, c2 = 0.025, c3 = 5 × 10−5, c4 = 5, c′
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3 at V = 100 for (a) ε = 0, (b) ε = 0.05, (c) ε = 0.1, and
(d) ε = 0.4. The time series shown here represent the increase in the
degree of synchronization with increase in coupling parameter. As
the coupling increases, the drive (solid black line), response (dotted
red line), and the auxiliary unit (dashed blue line) are synchronized,
indicating the onset of generalized synchrony.
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FIG. 9. Mutual information for the system given by Eqs. (A1)
and (A2), and the auxiliary unit, for the parameter values c1 =
5, c2 = 0.025, c3 = 5 × 10−5, c4 = 5, c′
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between drive and response (dashed line) and between the response
and the auxiliary unit (red circle).

drive-response (black) and response-auxiliary unit (red) is
low, which increases and, finally, becomes constant as one
increases the coupling between the two systems. The higher
values of MI at larger coupling values clearly captures the
onset of generalized synchrony in the system.

IV. SUMMARY AND DISCUSSION

In the present work we have shown that stochastic sys-
tems can also show an analog of generalized synchrony by
becoming strongly correlated with one another. We have
mainly considered noisy systems coupled in a drive-response
configuration. Application is made to model systems such
as the Lorenz system being driven by a Brusselator, both
simulated within the Langevin formalism [15]. For complete-
ness, we have also studied Brusselator and Lorenz systems as
coupled chemical oscillators, the coupling being in a drive-
response relationship and examined the different regimes,
ranging from the desynchronized state for low coupling
to phase synchronization at higher coupling and eventually
to GS.

In order to detect the synchronization behavior of noisy
systems, though, it is necessary to examine measures based
on the correlation between the variables of the drive and the
response. Order parameters that are derived from the mutual
information and the permutation entropy of a symbolic coding
of the signals provide suitable measures to detect the transition
from unsynchronized motion to generalized synchrony.

Generalized synchronization expands the notion of syn-
chrony to the situation when systems become specifically
correlated without necessarily behaving identically. Stochastic
generalized synchrony can thus provide a framework within
which the emergence of correlations in noisy systems can
be understood. In one scenario, a signal from one dy-
namical system drives another [8] and causes the response
to be functionally dependent on the drive. Noise-induced
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synchronization can be seen as an example of this phe-
nomenon, with the external signal being a stochastic noisy
drive [37,38]. Indeed GS has been shown to be noise
resistant [39], and within a regime of GS the effect of
noise is to confer greater stability to the system [17]. A
related noise-induced coherence is the so-called stochastic
resonance [40,41] and that phenomenon is of interest in its
own accord.

Synchronization is arguably the most commonly observed
collective behavior in a variety of natural systems [4]. Noise—
both intrinsic and extrinsic—is also characteristic of such
systems, and thus the persistence of synchrony in the presence
of noise indicates that the phenomenon is robust [42]. Several
instances of systems that individually are stochastic, but can
nevertheless behave synchronously, have been reported, rang-
ing from the case of coupled weather systems to coupled neu-
rons or chemical oscillators to the so-called Moran effect [43],
namely the synchronization of animal populations over wide
areas due to correlations in environmental fluctuations (as, for
example, in the weather) [44]. An example that underscores
the importance of synchrony in the presence of intrinsic noise
is in cellular dynamics: Microarray experiments of yeast
have revealed that the dynamical behavior of sets of very
distinct genes can be very similar [20,45]. The ubiquity of
stochasticity in natural systems can thus give rise to a form of
dependent dynamics that can provide a very robust mechanism
for timekeeping.
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APPENDIX: MODEL CHEMICAL OSCILLATORS

Model coupled stochastic systems such as the Brussela-
tor [36] and the Lorenz [22] are used in this study. The
Brusselator model can be expressed in terms of the following

chemical equations:

A1
c1−→ X1

A2 + X1
c2−→ X2 + A3

2X1 + X2
c3−→ 3X1

X1
c4−→ A4. (A1)

The reaction mechanism for the Lorenz system is given by [22]

R
c′

1−→ X′
3

A + X′
2

c′
2−→ X′

1 + X′
2

B + X′
1

c′
3−→ X′

3 + X′
1

B + X′
3

c′
4−→ X′

2 + X′
3

C + X′
1 + X′

2

c′
5−→ X′

3 + X′
1 + X′

2

D + X′
1 + X′

3

c′
6−−−→

(slow)
D∗ + X′

3 + X′
1

D∗ + X′
2 −→

fast
D + R

D
c′

7−−→
slow

D∗

D∗ + X′
2 −→

fast
D + R

E + X′
1

c′
8−−→

slow
E∗ + X′

1

E + X′
3 −→

fast
E + R

E + X′
2

c′
9−−→

slow
E∗ + X′

2

E + X′
3 −→

fast
E + R

X′
1

c′
10−→ R

X′
2

c′
11−→ R

X′
3

c′
12−→ R. (A2)

Both drive and response systems are treated using the exact
(SSA) [36].
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