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We study the dynamics of nonlocally coupled phase oscillators in a modular network. The interactions include
a phase lag, α. Depending on the various parameters the system exhibits a number of different dynamical states. In
addition to global synchrony there can also be modular synchrony when each module can synchronize separately
to a different frequency. There can also be multicluster frequency chimeras, namely coherent domains consisting
of modules that are separately synchronized to different frequencies, coexisting with modules within which the
dynamics is desynchronized. We apply the Ott-Antonsen ansatz in order to reduce the effective dimensionality
and thereby carry out a detailed analysis of the different dynamical states.
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I. INTRODUCTION

The synchronization properties of oscillators on complex
networks have long been of interest due to applications in
diverse branches of physics [1,2], chemistry [3,4], and biology
[2,5]. A class of complex networks that have recently attracted
considerable attention are those with a modular structure,
namely with groups of nodes that have significantly more
links connecting members of the group (or module) and with
fewer links between modules. Modular networks thus have a
“community” structure, with distinct patterns of internal and
external connectivity [6], and this has a significant impact
on the process of synchronization of dynamical systems
connected in such a topology. Systems on nodes belonging
to the same module or community synchronize with greater
probability for lower coupling [7,8] compared to systems on
nodes in different communities.

In this paper we consider phase oscillators on modular
networks and examine the effect of nonlocal coupling. Al-
though collective dynamics has been extensively studied in
networks of locally or globally coupled oscillators [9–12], a
study of the effects of nonlocal coupling is interesting since
in general most interactions are neither purely local or purely
global; they have a finite range that depends on the model
as well as the network topology [13–15]. Nonlocal coupling,
although relatively less explored [16], is of considerable
current interest following the observations by Kuramoto
and coworkers [17] that such coupling in an ensemble of
symmetrically and identically coupled dynamical systems can
give rise to complex spatiotemporal dynamics, the so-called
chimera states [18]. Chimeras are dynamically segregated
states, with some of the oscillators synchronizing in a coherent
cluster (or clusters), while others resist synchronization and
remain in an incoherent state. Such a state is dynamically
unexpected, and attempts have been made over the past few
years to understand the origin of such states [17–20], given
that there are possible applications to phenomena such as
unihemispheric sleep in mammals [21], bump states in neural
networks [22], power grids [23,24], etc. Chimera states have
been shown to arise in a number of experiments [25–28] and
in an increasing range of theoretical studies [29–32].

In the present work, we consider a modular network
of phase oscillators and study the different synchronization

patterns that emerge when the coupling has both local and
nonlocal components. The intermodular nonlocal coupling
is taken to have a piecewise linear dependence, similar to
that considered in our earlier work [33]. In addition to global
synchronization (GS) where all oscillators lock to a common
frequency, we find states where all oscillators within a module
synchronize separately to different frequencies: The network
shows modular synchronization (MS). In addition to MS,
the network can also exhibit a chimeric state where some
modules are synchronized to distinct frequencies, while other
clusters are desynchronized. We term these states multicluster
frequency chimeras (MFC) since they differ considerably from
the types of chimeric states observed in earlier studies that have
considered nonlocal coupling in modular networks [34,35].

The model dynamical system and network is described in
the following section. Some analysis of the nature of the states
and their stabilities is possible, and this is presented, along
with numerical results, in Sec. III. The different dynamical
scenarios are discussed in some detail in Sec. III as well.
We then carry out a dimensionality reduction via the Ott
and Antonsen ansatz [36]. The number of equations reduces
to the number of modules, and this permits further analysis
and validation of our numerical results. We conclude with a
summary and a discussion of the main results in Sec. IV.

II. MODEL DESCRIPTION

We consider a simple modular network of phase oscillators,
with M modules, each of which has an equal number n of
nodes. The size of the system is thus N = nM . The coupling
between the oscillators is symmetric and is such that oscillators
in the same module interact with a constant coupling, while
oscillators in different modules interact through a nonlocal
coupling that decays with the “distance” between the modules.
A schematic diagram of such network is shown in Fig. 1. The
dynamics of the oscillators in the network is given by

∂φa
i

∂t
= ω + 1

N

∑
j

′
Gab sin

(
φb

j − φa
i − α

)
, (1)

where the summation is over all oscillators in the network,
while the prime on the sum indicates that the self-interaction
term is absent. In Eq. (1), the notation is as follows: The

2470-0045/2016/93(1)/012207(10) 012207-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.012207


UJJWAL, PUNETHA, AND RAMASWAMY PHYSICAL REVIEW E 93, 012207 (2016)

FIG. 1. Schematic diagram of a nonlocally coupled modular
network. The intramodular connections are shown by dashed lines
while the connections between different modules are shown by solid
lines. The thickness of the solid lines represents the strength of the
connection, the adjacent modules are strongly connected but coupling
strength decreases as the distance between the modules increases.

superscripts a,b are the module indices, while the subscript
indexes the different oscillators in a module. Thus φa

i is the
phase of the ith oscillator in the ath module, i = 1,2, . . . ,n,
and a = 1,2, . . . ,M . The natural frequency of the oscillators
is denoted by ω, since all the oscillators are identical, we can
put ω = 0 without loss of generality. The interactions in the
network include a phase lag, namely the parameter α ∈ (0, π

2 ).
The coupling Gab is defined as follows:

Gab =
{

ε(M−|a−b|)
M2 , if a �= b

μ, if a = b
, (2)

where a,b = 1, . . . ,M are the module indices. The maximum
value of the nonlocal coupling, Gmax is attained when the
interaction is considered between adjacent modules (|a − b| =
1), and this coupling decreases linearly with the difference in
the module indices. Note that the function is non-negative
and is normalized to have unit integral. The intra-modular
connections are taken to be of equal strength μ.

We study the synchronization properties of the system as
a function of phase lag parameter, α. The existence of a lag
makes nodes that are coupled to each other maintain a finite
phase difference and thus this parameter plays a major role
in balancing the degree of synchrony and asynchrony in the
network. As the value of α is varied the system shows different
scenarios of synchronization, and these are discussed in the
following section.

π/4 π/2α
 1

 40

 80

 120

i

-0.06

-0.01

 0.04

GS MS MFC

FIG. 2. Oscillator frequencies as a function of the phase lag
parameter, α, for M = 10, N = 120, and μ = 0.1. In the region
of global synchronization (GS) all oscillators have the same fre-
quency; in modular synchronization (MS) and multicluster fre-
quency chimeras (MFC), different groups of oscillators have distinct
frequencies.

III. RESULTS

We first present some numerical results for a system with
n = 12 oscillators in M = 10 modules, taking the intramodule
coupling strength parameter μ = 0.1 and the intermodule
parameter ε = 1.0. In simulations the initial phases are taken
randomly between 0 and 2π . Fig. 2 summarizes the typical
behavior of the network of 120 oscillators when the phase lag
parameter α is varied from 0 to π/2. The distinct states that
are apparent can be described as follows:

(1) For small α, a global synchronized state (GS) is
observed. All oscillators in the network lock on to a common
frequency. Oscillators in the same module have the same phase,
and there is a phase-lag between the different modules.

(2) For somewhat higher values of α, MS is seen. Each
module synchronizes to a different frequency.

(3) When α is further increased, some of the modules
become desynchronized, and MFCs are formed. Synchronized
modules coexist with desynchronized modules. However, a
given module is either completely synchronized or completely
desynchronized; chimeras do not exist within a module.

(4) For α near π/2, the system is completely desynchro-
nized.

These results are typical: the same set of states are found to
occur as a function of α, regardless of the numbers of modules
or oscillators and even when the numbers of oscillators in
different modules are not identical. It is therefore useful to
define a measure of the dynamical diversity of the network for
a given α through the number Nf of distinct frequencies in
the system. This number varies between 1 when all oscillators
are in synchrony and N when each oscillator has a different
frequency. The ratio

γ = Nf

M
(3)

thus functions as an order parameter. In GS the system has a
single frequency, Nf = 1. In the MS state each module has a
different synchronized frequency and Nf = M , while in the
MFC, Nf > M . Thus γ < 1 for GS, γ = 1 for MS, and γ > 1
for MFC. The numerical frequency as a function of α for a
typical case is plotted in Fig. 3(a), and the variation of γ with
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FIG. 3. Frequencies of the oscillators in the network as a function
of α. The parameter γ [see Eq. (3)] is computed from the number of
distinct frequencies, Nf , and is shown as a function of α.

α is shown in Fig. 3(b) for comparison. A detailed description
of these states is given in the following sections.

A. Globally synchronized states

For small α the system of Eq. (1) becomes globally
synchronized. All oscillators lock to a common synchronized
frequency, but the phase distribution is such that oscillators in
the same module have identical phases while there is a phase
lag between oscillators in different modules. A typical phase
snapshot of such a GS network with M = 10, n = 12, μ = 0.1,
and α = 0.1 is shown in Fig. 4. Since all the oscillators in the
same module have the same phase, each module in the network
can be characterized by a modular phase δa with reference to
the first module, δ1. The distribution of modular phases, δa , for
different numbers of modules, M (keeping N fixed), is plotted
in Fig. 5 and as can be seen the distribution of δa is symmetric
about the central module in the network, i.e., δk = δM−(k−1).

 2.29
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 2.31

 2.32
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 1  20  40  60  80  100  120

φ i

i

FIG. 4. Phase snapshot of the oscillators in the global synchro-
nized (GS) state at α = 0.1, for a network of N = 120 oscillators in
M = 10 modules.
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FIG. 5. Phase of a th module, δa with respect to first module, δ1

plotted for different numbers of modules M .

In this regime, Eq. (1) can be solved analytically to obtain
the expression for synchronized frequency, 
. Combining the
intramodular coupling μ and nonlocal coupling function to
form a weighted connection matrix, W, the equation of motion
for the ith oscillator can be written as:

∂φi

∂t
= 1

N

N∑
j=1

Wij sin(φj − φi − α). (4)

Here Wij are the elements of the N × N weighted matrix W,
written in block form as

W =

⎡
⎢⎢⎢⎢⎢⎣

μE G12F G13F . . . G1MF
G21F μE G23F . . . G2MF
G31F G32F μE . . . G3MF

...
...

...
. . .

...
GM1F GM2F GM3F . . . μE

⎤
⎥⎥⎥⎥⎥⎦, (5)

where E is a (n × n) matrix with diagonal and off-diagonal
entries being zero and 1, respectively. F is also a matrix of size
n × n, with all entries equal to unity. Expanding the coupling
term in Eq. (4) gives

∂φi

∂t
= 1

N

N∑
j=1

Wij [cos α sin(φj − φi) − sin α cos(φj − φi)].

(6)
For synchronized solutions,

φi = 
t + δi, (7)

where 
 is the collective frequency of the oscillators and δi’s
are the respective phases, with respect to the first oscillator,
namely δ1, which we set to zero. Putting this solution in Eq. (6)
gives


 = 1

N

N∑
j=1

Wij [cos α sin(δj − δi) − sin α cos(δj − δi)].

(8)
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When averaged over all the oscillators, the first term in the
expansion vanishes and the equation reduces to


 = − sin α

N2

N∑
i=1

N∑
j=1

Wij cos(δj − δi). (9)

Introducing the notation �ij = δj − δi , the above equation
reads


 = − sin α

N2

∑
i,j

Wij cos �ij . (10)

For M = 2 an exact solution to Eq. (4) can be obtained
for the in-phase synchronization state, �ij = 0,∀i,j ; i,j =
1,2, . . . ,N . The common frequency 
 is given by


 = − sin α

N2

∑
i,j

Wij . (11)

For higher M , obtaining an exact solution for 
 and the δ′
i s

is nontrivial, but it is possible to obtain an estimate for 
 by
expanding the right-hand side of Eq. (9) and retaining terms
up to second order in �,


 = − sin α

N2

∑
i,j

Wij

[
1 − �2

ij

2
+ · · ·

]
. (12)

Rearrangement gives


 = − sin α

N2

∑
i,j

Wij + sin α

2N2

∑
i,j

Wij�
2
ij , (13)

for which a mean-field approximation is


 = − sin α

N
〈W 〉 + sin α

2N
〈W�2〉, (14)

〈〉 being an average over all oscillators, and

〈W 〉 = 1

N

∑
i,j

Wi,j and 〈W�2〉 = 1

N

∑
i,j

Wi,j�
2
ij . (15)

The first term on the right-hand side of Eq. (14) depends
on the network topology, while the latter one depends on
the phase differences, and it can be seen that the collective
frequency has a dependence on the phase differences, making
any solution fairly nontrivial. However, considering terms that
are independent of the δ’s gives a good estimation of the
synchronized frequency 
 as a function of α. The analytical
estimate for 
 obtained from Eq. (14) is plotted in Fig. 6
along with the values obtained numerically for different M .
The numerical frequencies (shown in blue circles) match well
with the analytical values (shown by a red dashed line) in the
GS region. For fixed M , 
 decays with α, linearly for small
values of α. As higher-order terms begin to play a role, the
approximation worsens, and there is a clear deviation from
linearity. As α increases further the system is no longer in
a synchronized state, as indicated by the scattered values of
numerical frequencies (blue circles).

Kori and Mikhailov [16] have noted, in a study of an
ensemble of phase oscillators that share some of the features of
the present modular network, that the entrainment frequency
window decreases with an increase in the network depth
[16]. This quantity, in our present situation, would roughly

-0.1

 0

Ω

 (a) M = 3

-0.1

-0.05

 0

Ω

 (b) M = 5

-0.05

 0

Ω

 (c) M = 10

-0.04

-0.02

 0

0 π/8 π/4 3π/8 π/2
Ω

α

 (d) M = 20

FIG. 6. Comparison of synchronized frequency, 
 obtained
analytically (the red dashed line) and numerically (blue circles) as
a function of α for different numbers of modules in the network:
(a) M = 3, (b) M = 5, (c) M = 10, (d) M = 20.

be proportional to the number of modules. A similar effect can
be seen in Fig. 6 where analytical and numerical values of 


are compared as a function of α for different M . Note that
as the number of modules M increases, the value of α above
which a synchronized state ceases to exist shifts towards lower
values and the synchronized region narrows as well.

The stability of the GS state can be analyzed in the usual
manner. Assuming that �a

P (t) is a periodic solution of period
T = 2π/
 for the ath module when there is GS, then one can
see that the synchronized solutions satisfy

∂�a
P

∂t
= − (n − 1)μ

N
sin α + 1

M

∑
b

′
Gab sin

(
�b

P − �a
P − α

)
,

(16)
where a,b = 1, . . . ,M , and the prime on the summation
indicates that b �= a. To each module we apply perturbations
ξa transverse to the synchronized periodic solution of all
oscillators, namely

φa(t) = �a
P (t) + ξa(t), (17)

and by substituting these in Eq. (16), one obtains the linearized
variational equation,

∂ξa

∂t
= 1

M

∑
b

′
Gab cos

(
�b

P − �a
P − α

)
(ξb − ξa). (18)

The stability of the GS state thus does not depend on
the intramodular coupling strength μ, since these terms are
excluded from the variational equation (b = a is not allowed).
To check the stability of GS state, we calculate Floquet
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FIG. 7. The parameter γ (green circles) and the largest Floquet
multiplier, ρm (red dashed line) as a function of α showing the stability
of the GS state for (a) μ = 0 and (b) μ = 0.1.

multipliers for synchronized periodic orbit of time period
T = 2π/
. The largest real part of the Floquet multiplier ρm

(calculated for 100 initial conditions) is plotted along with the
order parameter γ in Fig. 7. The region where synchronized
solutions Eq. (7) are stable are those for which magnitude
of ρm is less than unity. The Goldstone mode corresponds
to the trivial multiplier ρ = 1 and relates to perturbations
along the direction of the periodic orbit. Above α ≈ 1.0,
the magnitude of ρm becomes greater than unity, indicating
that the GS state is unstable. The cases of μ = 0 and μ = 0.1
are shown in Fig. 7.

B. Modular synchronization

For intermediate values of α the system shows different
behaviors, depending upon the strength of the intramodular
coupling μ. So long as μ �= 0, the system can exhibit MS
where oscillators within a module are in complete synchrony
but the frequency varies from module to module. Unlike the
case of GS, in MS the oscillators from each module lock to
a distinct time-dependent frequency which differs for each
module. Phase and frequency snapshots of the system in the
MS state are shown in Fig. 8: In this case the network has M

distinct frequencies and thus the order parameter γ = 1.
We find that MS occurs only when μ �= 0. When there is no

intramodular coupling, oscillators within a given module are
unable to synchronize among themselves, so one can observe
GS and MFC but there can be no MS. In Fig. 9 the variation
of γ as a function of α is plotted for different values of μ. The
absence of MS for μ = 0, namely for a purely multipartite
network, can be seen in Fig. 9(a).

For higher values of μ the system shows MS and indeed
the region of MS increases with increasing μ (Fig. 9). These
findings seem to suggest that intramodular connectivity is
necessary to observe MS in such networks. We also note that
the value of α at which system makes a transition from GS
to MS (for μ > 0) or MFC (for μ = 0) is independent of the
value of μ. This is evident from the Eq. (18) obtained for the

 0.2

 0.6

 1

φ i

(a)

-0.06

-0.04

 1  20  40  60  80  100  120

φ i

i

(b)

.

FIG. 8. (a) Phase and (b) frequency snapshots of the oscillators
in the modular synchronized (MS) state for α = 1.32 and M = 10.

stability of the GS state where the intramodular coupling do
not affects the stability of GS state. We therefore infer that the
number of modules M determines the region of GS, while the
intramodular coupling strength μ decides the region of MS as
a function of α.

C. Multicluster frequency chimeras

For higher α, chimeric states occur in the modular network.
In some modules the dynamics are synchronized while in
others the oscillators evolve incoherently. In each coherent
module, the frequency of synchronized motion is distinct,
and thus we term this kind of chimeric state a MFC. The
MFCs should by distinguished from the frequency chimera
states that are observed in globally coupled Stuart-Landau
oscillators [37]; there all oscillators that form a part of the
coherent group have a single frequency. When the value of
α increases, the MFC state emerges from MS: Oscillators in

 0

 4

 8

 12

γ

 (a)  (b)

 0

 4

 8

 12

π/4 3π/8 π/2

γ

α

 (c)

π/4 3π/8 π/2
α

 (d)

FIG. 9. The parameter γ in the network as a function of α

for different values of intramodular coupling strength, (a) μ = 0,
(b) μ = 0.05, (c) μ = 0.1, and (d) μ = 1.0.
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FIG. 10. Upper panel shows the phases and the lower panel
the corresponding frequencies of the oscillators in the multicluster
frequency chimera (MFC) state (a) α = 1.43 on the left and
(b) α = 1.55 on the right.

some modules become desynchronized. Modules at extreme
ends of the network first become desynchronized while the
central modules, being the most stable, remain synchronized
for a wider range of α.

An intuitive explanation for this behavior can be given in
terms of the total coupling experienced by each module. There
is an “edge effect” since modules at the extreme ends have
a strong connection in one direction, while modules located
centrally are connected strongly in both. Due to this, the
modules at the extreme ends are desynchronized before the
more central modules when α is increased.

Figure 10 shows the phase φi and corresponding frequency
snapshots of the oscillators in a typical MFC and the
dependence on α. For α close to π/2 all the oscillators in
the network gradually become desynchronized.

For MS and MFC states, the frequencies of the oscillators
are time dependent and the general form of the solution of
Eq. (4) can be written as

φi(t) = Fi(t) + di, (19)

where Fi is a nonlinear function of time and di is the time-
independent part. In the GS regime, by contrast, Fi(t) = 
t ,
and the collective frequency 
 is constant in time. This is
shown in Fig. 11 where the frequencies of two randomly
selected oscillators from each module are plotted. Figure 11(a)
corresponds to MS, where the frequencies are time dependent
and different for different modules, while Fig. 11(b) shows a
MFC. For MS state, the frequencies of the oscillators within
individual modules are equal but time dependent, and thus
each module is separately synchronized but 
a(t) �= 
b(t).
For other values of α when there are MFCs in the system,
oscillators in some modules are synchronized with each
module locked to a different (but time-dependent) frequency,
while the oscillators in other modules are phase incoherent,
although they all have similar time-dependent frequencies
[Fig. 11(b)].

There is a symmetry in the mean frequencies of the
modules: the time-averaged frequencies of modules a and

-0.06

 0.1

φa i, 
j(t

)

(a)

-0.06

0.06

1 120

φ i

i

-0.06

 0.1

48720 48810 48890 48980

φa i, 
j(t

)

t

(b)

-0.06

0.06

1 120

φ i

i

FIG. 11. For MS (a) and MFCs (b), the time-dependent frequen-
cies φ̇a

i,j (t) of two arbitrarily chosen oscillators, i and j (lines and
symbols respectively), are plotted from each module a = 1, . . . ,10.
Frequency snapshots of both states (MS and MFCs) are shown in the
insets.

(M + a − 1) are equal. This is shown in Fig. 12, where
time-averaged frequencies 〈φ̇i(t)〉 of all oscillators are plotted
as a function of α at different μ values. In GS regime,
time-averaged frequencies of all oscillators are equal since
they all lock to the time-independent synchronized frequency

. However, the GS state loses stability when α is increased
and the mean frequencies of the modules systematically break
up pairwise with the modules at extreme ends splitting first
[see Figs. 12(c) and 12(d)].

The stability of these different states can be analyzed
by considering a symmetric perturbation in two arbitrary
oscillators of each module [38], φa

1,2 = �a ± ξa , where,

 0

 40

 80

 120

γ

(a) (b)

-0.06

0

π/4 3π/8 π/2

<
 φ

i(t
) 

>

α

.
1,10 2,9

3,8 4,7

5,6

(c)

π/4 3π/8 π/2
α

1,10
2,9

3,8 4,7
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FIG. 12. The order parameter γ (upper panel) and the time-
averaged frequencies 〈φ̇i(t)〉 of the oscillators (lower panel) are
plotted as a function of α for μ = 0 (left panel) and μ = 0.1
(right panel), respectively. The time-averaged frequencies of ath and
(M − a + 1)th module are equal and when α is increased, and they
systematically break pairwise as marked by index of the breaking
modules.
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a = 1, . . . ,M . In this way both the cases when individual
modules are synchronized to the same frequency, namely GS,
and the situation of individual modules being synchronized to
different frequencies, MS, can be distinguished. The linearized
variational equation for each module can be written as

∂ξa

∂t
= − 1

M

M∑
b=1

�ab cos(�b − �a − α)ξa, (20)

where

� =

⎡
⎢⎢⎢⎢⎢⎣

μ G12 G13 . . . G1M

G21 μ G23 . . . G2M

G31 G32 μ . . . G3M

...
...

...
. . .

...
GM1 GM2 GM3 . . . μ

⎤
⎥⎥⎥⎥⎥⎦. (21)

Equation (20) must be solved numerically for large times
along the trajectory of the entire system. When the corre-
sponding Lyapunov exponents are calculated (one for each
of the M modules), since Eq. (20) is independent of ξb,
the corresponding Lyapunov exponents indicate the behavior
of the individual module, and module desynchronization
is indicated by the Lyapunov exponents crossing zero. In
Fig. 13 the Lyapunov exponents λ have been plotted with the
parameter γ as a function of α for two cases, μ = 0 namely
when the network exhibits GS and MFC but no MS and the
other for μ = 0.1 when all three states occur. In the GS state,
all Lyapunov exponents are negative with pairs of Lyapunov
exponents behaving identically, reflecting the phase symmetry
observed in GS state.

The Lyapunov exponents remain negative for MS which
is also a synchronized state, but when the synchronized state
loses stability, one pair of Lyapunov exponents crosses zero.
As the system enters into MFC more and more Lyapunov
exponents cross zero, corresponding to the gradual desynchro-
nization of successive modules. When μ = 0, the modules
gets desynchronized systematically and the corresponding
Lyapunov exponents crosses the zero line in the systematic

 0

 4

 8

 12

γ

(a) (b)

-0.04

 0

π/4 3π/8 π/2

λ

α

(c)

π/4 3π/8 π/2
α

(d)

FIG. 13. The parameter γ and Lyapunov exponents λ as a
function of α showing crossing of Lyapunov exponents where
transitions between different states occur for μ = 0.0 [(a) and (c)]
and μ = 0.1 [(b) and (d)].

fashion as can be seen in Fig. 13. The crossings of the
Lyapunov exponents therefore indicate the values of α where
the transitions between the states occur.

D. Dimensional reduction

In the limit of large N the system can be reduced to a finite
set of equations using the Ott and Antonsen (OA) ansatz [36].
We briefly recall some of the essential steps in the procedure
here. Rewriting Eq. (1) in terms of the modules, one has

dφa
i

dt
= ω +

M∑
b=1

�ab

N

n∑
j=1

sin
(
φb

j − φa
i − α

)
. (22)

In the continuum limit the dynamics of the system can
be described in terms of the density function f a(φa,t) that
represents the density of the oscillators in module a, the
corresponding phase being φa . Since the number of oscillators
in each module is conserved, f a(φa,t) satisfies the continuity
equation,

∂f a

∂t
+ ∂(f ava)

∂φa
= 0. (23)

Following OA, the velocity of the oscillators in terms of
f a(φa,t) can be written as

va = ω +
M∑

b=1

�ab

M

∫ 2π

0
sin(φb − φa − α)f b(φb,t)dφb.

(24)
In order to measure the synchrony in different modules it is
convenient to define the complex order parameter

za(t) =
M∑

b=1

�ab

M

∫ 2π

0
eiφb

f b(φb,t)dφb. (25)

Using this expression in Eq. (24), we get

va = ω + 1

2i
[e−iφa

e−iαza(t) − eiφa

eiαza∗(t)]. (26)

Now expanding f a(φa,t) in a Fourier series [36],

f a(φa,t) = 1

2π

{
1 +

[ ∞∑
k=1

(pa(t)eiφa

)k + c.c.

]}
, (27)

where c.c. indicates the complex conjugate, and, substituting
the expression of f a and va in Eq. (23), we get

dpa

dt
= −iωpa + 1

2
(pa)2zae−iα + 1

2
(za)∗eiα. (28)

The order parameter can be written as

za(t) =
M∑

b=1

�ab

M
[pb(t)]∗, (29)

while the complex variable pa can be written in polar
coordinates as

pa = rae−iψa

. (30)
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(ψ
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(ψ
a )

ra cos(ψa)
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ra cos(ψa)

(d)

FIG. 14. System dynamics in terms of polar coordinates ra and
ψa for μ = 0. The real and imaginary components, (ra cos ψa and
ra sin ψa , respectively) for each module are plotted for different
values of α (a) α = 0.7, (b) α = 1.1, (c) α = 1.2, and (d) α = 1.4.
The radius of the circle corresponds to the state of the module:
ra = 1 indicates the module is synchronized, whereas ra < 1 for
desynchronized dynamics in a module.

With a little algebra, the evolution equations for the variables
ra and ψa for each module are obtained as

dra

dt
= 1 − (ra)2

2

M∑
b=1

�ab

M
rb sin(ψb − ψa + β), (31)

and

dψa

dt
= −1 + (ra)2

2ra

M∑
b=1

�ab

M
rb cos(ψb − ψa + β), (32)

where β = π/2 − α. Thus the full system can be reduced
to 2M equations for the components of the module order
parameters, ra and ψa . Note that if all the oscillators in a
given module a are synchronized, then ra = 1 while any value
of ra less than 1 indicates desynchrony. The global dynamics
is characterized by the average ravg = 1

M

∑M
a=1 ra: for both

global synchrony or modular synchrony it is clear that ravg = 1
while ravg < 1 indicates the MFC.

The overall system behavior can be conveniently visualized
by examining the dynamics of the order parameters, namely
the solutions to Eqs. (31) and (32); these are shown for different
α in Fig. 14. As discussed above, coherence in the dynamics
of the ath module is characterized by ra . For GS or MS,
ra = 1 [see Fig. 14(a) for α = 0.7]. Upon further increasing
α, the system enters into the MFC state where some modules
get desynchronized. The systematic desynchronization of the
modules can be seen in Figs. 14(b)–14(d), with ra = 1 and
ra < 1 corresponding to the synchronized and desynchronized
modules, respectively. The variation of ravg as a function of α

 0.6

 0.8

 1

r a
vg

(a)

 0.6

 0.8

 1

0 π/8 π/4 3π/8 π/2

r a
vg

α

(b)

FIG. 15. Variation of the average order parameter ravg as a
function of the phase-lag parameter, α, for (a) μ = 0 and (b) μ = 0.1.

is shown for μ = 0 and μ = 0.1 in Fig. 15. This analysis
can thus differentiate between MFC and purely synchronized
dynamics.

For an ensemble of oscillators that have an intrinsic spread
in the natural frequencies, the OA analysis indicates [36] that
in the thermodynamic limit the dynamics is attracted to a single
manifold. However, as has been pointed out by Pikovsky and
Rosenblum [34] if the frequencies are all identical a more
general form applies and there can be several attracting states
[39]. The behavior of the reduced system, namely Eqs. (31)
and (32) can then depend on initial conditions in the MFC
regime and therefore also the order parameters defined above
and plotted in Figs. 14 and 15.

The existence of different dynamical states can be under-
stood in terms of the effect of three competing factors. The first
one is the phase frustration parameter α which favors disorder
in the system. The other two factors are intermodular nonlocal
coupling and intramodular interaction μ, that support inter-
and intramodular synchronization, respectively. In the absence
of intramodular interactions, the increase in phase frustration
parameter α destroys GS by breaking the synchronized
modules systematically (due to the nonlocal nature of the
coupling). However, for finite value of μ, oscillators within
each module tend to synchronize even if the synchronization
between the modules may not exist. This leads to the MS (for
lower α values) and MFC (for higher α values) states observed
in the system.

IV. SUMMARY

In the present work we have examined the manner in which
nonlocal coupling affects dynamics in oscillator networks that
have a modular structure. The existence of modules creates
new types of chimeric states. In one case, a number of different
coherent modules coexist, while in the other, some modules
are coherent, while others are desynchronized. The occurrence
of chimera states in the present case is due to heterogeneity
in the coupling. However, the chimeras observed here differ
from the phase chimeras observed by Zhu and colleagues
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[40] in nonlocally coupled network of phase oscillators and
partially synchronized state reported in coupled identical phase
oscillators with scale-free distribution of coupling strengths
[41] where all oscillators in the synchronized group lock to a
single frequency.

The modular structure that we have explored here arises
from a differential coupling pattern. The entire network is
separated into a fixed number of modules. The intramodular
coupling is controlled by one parameter, while the intermod-
ular coupling, which is also nonlocal, is tuned by a different
parameter, making it possible to examine different limits with
this partitioning. We have examined the effects of changing
the number of nodes in each module, as also in changing the
nature of the nonlocal coupling, and find that the qualitatively
results are robust.

In many experiments in neuroscience, for example, those
that involve recording scalp electroencephalogram, different
types of synchronization can be observed [42]. During various
mental activities different neuronal networks may start to
oscillate with different frequencies [43]. This is similar to
modular synchronization state observed here in nonlocally
coupled modular network. Similar analogy can be drawn
between multicluster frequency chimeras and the so–called
type 2 synchronization, where each subnetwork in the brain

may oscillate synchronously, but oscillations of some specific
frequencies disappear [42].

The existence of these different kinds of chimera states in
networks with the modular architecture opens new avenues
for further research through a systematic study of the role of
network architecture and the effect of heterogeneity on such
states. Clearly there are many generalizations of the topology
that we have examined as well as the coupling scheme used that
would be interesting to study. The effect of time delay is also
important, although the phase-lag parameter can be interpreted
as time delay in the coupling when delay is very small. The
role of phase lag between nodes in balancing spontaneous
order and permanent disorder in the network [20] has been
noted in earlier work, and this parameter also offers another
avenue for exploring the dynamics of modular networks.
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