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We study synchronization in bipartite networks of phase oscillators with general nonlinear coupling and
distributed time delays. Phase-locked solutions are shown to arise, where the oscillators in each partition are
perfectly synchronized among themselves but can have a phase difference with the other partition, with the
phase difference necessarily being either zero or π radians. Analytical conditions for the stability of both types
of solutions are obtained and solution branches are explicitly calculated, revealing that the network can have
several coexisting stable solutions. With increasing value of the mean delay, the system exhibits hysteresis,
phase flips, final state sensitivity, and an extreme form of multistability where the numbers of stable in-phase
and antiphase synchronous solutions with distinct frequencies grow without bound. The theory is applied to
networks of Landau-Stuart and Rössler oscillators and shown to accurately predict both in-phase and antiphase
synchronous behavior in appropriate parameter ranges.
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I. INTRODUCTION

The bipartite topology describes a connection structure
where the nodes of a network can be divided into two
groups such that any two nodes that are coupled must belong
to different groups. Several of the most commonly studied
network topologies, e.g., linear chains, regular grids, rings
with an even number of nodes, tree structures, and the star
topology, are bipartite [1–7], the simplest instance probably
being a pair of nodes connected to each other. Real examples
arise in a number of areas of study and Fig. 1(a) shows a
schematic depiction of some typical connection topologies. In
biology, well-known examples include metabolic networks,
the immune system, or gender-related interactions at the
species level. In ecology, the food chain and interaction webs
can also be bipartite.

The study of network synchronization has found application
in many areas of science and technology [8–14] and many
of the networks studied in this context frequently fall in the
bipartite class. For instance, sequentially coupled lasers (in
a chain or on a ring with an even number of elements) [11]
or dynamical elements (clocks, cellular populations, lasers,
etc.) communicating with each other via a central hub [12] are
bipartite networked systems, as is the case of relay-coupled
systems, where information is transmitted between two nodes
through several intermediate ones [see Fig. 1(b) for a simple
case]. In the latter example, each node corresponds to an
oscillator and the signal transmission in the system is subject
to a time delay τ . The observation that oscillators 1 and
3 can be perfectly phase synchronized while oscillators 1
and 2 and oscillators 2 and 3 are lag synchronized [15] is
an example of the interesting spatiotemporal behavior that
can arise in relay-coupled bipartite systems. This also under-
scores the importance of understanding synchronized solutions
(both in-phase and antiphase) as a mechanism for bringing
about complex temporal correlations in spatially extended
systems.

The stability properties of synchronized networks have
been considered in earlier work [16–18], which focused
upon the completely synchronized in-phase solution. Lag-
synchronized states are also important since these corre-
spond to a distinct and useful behavior of the system. In
delay-coupled neurons, for example, different synchronized
states play an important role in activity patterns, cogni-
tion, learning, and pathological conditions [13,14]. With
parameter variation, switching has been observed among
complete and lag-synchronized states, indicating a transition
among different neuronal activities [14]. These findings
strengthen the motivation for a detailed exploration of the
various synchronized solutions and their stability in bipartite
networks.

In this paper our interest is in the nature of synchronization
of oscillators on bipartite networks when there is an inherent
delay in the coupling. Specifically, we consider a system
of N coupled phase oscillators with distributed coupling
delays

θ̇i = ω + ε

ki

N∑
j=1

aijg

(∫ ∞

0
θj (t − s)f (s)ds − θi(t)

)
,

i = 1, . . . ,N, (1)

where θi ∈ S1 is the phase of the ith oscillator, ω is the
natural frequency of the oscillators, and the coupling function
g is a differentiable 2π -periodic function on R. The coupling
strength is denoted by ε and details of the connection structure
are contained in the numbers aij � 0, nonzero aij indicating
that there is an input from the j th oscillator to the ith (with
aij not necessarily equal to aji). The total input received by
the ith oscillator is ki = ∑N

j=1 aij , which is assumed to be
nonzero for all i. The delays in the information transmission
between the nodes are represented by the distribution function
f , which is assumed to have compact support and satisfy the
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FIG. 1. (Color online) (a) In bipartite networks, the nodes sep-
arate into two sets, here marked in red (light gray) and blue
(dark gray), such that connections are only between differently
colored nodes. (b) Simple example of a bipartite relay network with
bidirectional coupling of strength ε and delay τ in the interaction.
(c) General coupling scheme in a bipartite topology: In partitions A

and B there are NA and NB oscillators. The links may be directed.
(d) Complete bipartite network with NA = NB = 3 that has been used
in the numerical simulations presented in this paper.

normalization condition∫ ∞

0
f (s)ds = 1. (2)

Furthermore, the mean delay is defined as

τ =
∫ ∞

0
sf (s)ds. (3)

In the special case when f is given by a Dirac delta function
f (s) = δ(s − τ ), one obtains a discrete delay at the value τ

and Eq. (1) becomes

θ̇i = ω + ε

ki

N∑
j=1

aijg(θj (t − τ ) − θi(t)), i = 1, . . . ,N. (4)

The undelayed case (τ = 0) with the coupling function g(x) =
sin x has been extensively studied by Kuramoto and co-
workers [19] and Crawford [20]. The delayed Kuramoto model
was studied by Schuster and Wagner [21], who considered a
single pair of oscillators with a discrete delay and numerically
investigated their phase-locked solutions. Yeung and Strogatz
[17] subsequently studied globally coupled networks in the
presence of noise. The effects of delayed feedback on the
transition from incoherent to the synchronized state was
studied by Goldobin and Pikovsky [22] for an ensemble of
globally coupled oscillators. General networks and coupling
functions g were investigated by Earl and Strogatz [18],
who derived an analytical condition for the stability of the
completely synchronized solution under a discrete delay. To
restate their result, the synchronized solution θi(t) = �t ∀i of
Eq. (4), where � denotes the common frequency, is locally
asymptotically stable if and only if εg′(−�τ ) > 0.

Despite these fairly extensive studies, the understanding of
the dynamics of delay-coupled oscillator networks remains

incomplete. For instance, although the criterion of [18]
indicates that the synchronized solution of Eq. (4) is unstable
when εg′(−�τ ) < 0, there is no information regarding the
actual attractor of the system. Moreover, recent results indicate
that there can be a curious spatial organization of coexisting
phase-locked and incoherent solutions, namely, the chimera
states [23]. These exhibit an even more complex structure when
the coupling has time delay [24]. In particular, the neighboring
spatial regions of coherence in chimera states have an antiphase
relationship with each other, indicating the fundamental
importance of in-phase and antiphase synchronization.

Our aim in the present paper is to give a rather complete
picture of the synchronized dynamics of Eq. (1) for bipartite
networks and thereby extend previous results in several
directions. First, we consider phase-locked solutions much
like [21] but with a phase difference between partitions (as
opposed to between two oscillators) for general coupling
functions g and delay distributions f . We show that the
only possible values of the phase difference are either zero
(corresponding to in-phase, or complete, synchronization)
or π radians (corresponding to antiphase synchronization)
and derive analytical conditions for the stability of each
one. Consequently, we prove that the network switches to
an antiphase synchronized state when the synchronization
condition given in Refs. [18] is violated: this answers the
open question stated above. In this state the oscillators within
each partition are completely synchronized with each other,
but there is a phase difference of π between the partitions.

Furthermore, by explicitly calculating frequency-delay
curves for stable phase-locked solutions, we show that several
in-phase and antiphase synchronized states can stably coexist
for the same parameter values, each having a different collec-
tive frequency. The final behavior of the network is determined
only by the initial conditions, i.e., there is multistability. We
derive an analytical formula for the number of coexisting stable
solutions, which shows that the number of such attractors
grows without bound as the mean connection delay increases.
Thus, it is possible to essentially design a network that has
any desired value of the oscillation frequency (within an
allowable range that is determined by the coupling strength)
by changing the coupling delay; moreover, the partitions can
be made to oscillate in-phase or antiphase, as desired. In the
final part of this paper we apply the analysis for phase oscil-
lators to coupled limit-cycle and chaotic oscillators, thereby
giving a detailed account of synchronization in bipartite
networks.

II. SYNCHRONIZATION IN BIPARTITE NETWORKS

When the network underlying Eq. (1) has a bipartite
connection structure, the vertex set can be written as the
disjoint union of two sets A and B such that aij = 0 whenever
i and j both belong to A or both belong to B. We are interested
in the synchronized solutions of the network, possibly with a
phase difference φ between the partitions. Hence, we take

θi(t) =
{
�t for i ∈ A

�t − φ for i ∈ B,
(5)

where � denotes the common synchronous frequency. Sub-
stituting into Eq. (1) and using Eqs. (2) and (3), we
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obtain

� = ω + εg(−�τ − φ) = ω + εg(−�τ + φ). (6)

Thus, a necessary condition for the existence of phase-locked
solutions of the form (5) is

g(−�τ − φ) = g(−�τ + φ). (7)

Clearly, Eq. (7) always has an in-phase solution φ = 0. We
denote the corresponding collective frequency as �0, whose
values are given by the solutions of the transcendental equation

�0 = ω + εg(−�0τ ). (8)

In addition, since g is periodic with period 2π , Eq. (7)
is also satisfied for φ = π . Thus, there can also exist an
antiphase solution φ = π , with the corresponding frequency
�π satisfying

�π = ω + εg(−�πτ − π ) = ω + εg(−�πτ + π ). (9)

Moreover, if 2π is the minimum period of g, then φ = 0
and φ = π are the only generic solutions (i.e., solutions that
always exist regardless of the value of τ ) satisfying Eq. (7).
We next show that, for any given values of ω and τ , both
Eqs. (8) and (9) have at least one solution for the frequencies
� and give a condition for the stability of the corresponding
synchronous solutions (5).

Theorem 1. Consider Eq. (1) where the delay distribution f

has mean value τ and suppose that the network is bipartite and
has a spanning tree. Then the following hold.

(a) In-phase solutions. There always exists a solution of
the form (5) with φ = 0 and � = �0 given by Eq. (8). Such
a solution is locally stable if εg′(−�0τ ) > 0 and unstable if
εg′(−�0τ ) < 0.

(b) Antiphase solutions. There always exists a solution of
the form (5) with φ = π and � = �π given by Eq. (9). Such a
solution is locally stable if εg′(−�πτ − π ) > 0 and unstable
if εg′(−�πτ − π ) < 0.

Furthermore, if g has minimum period 2π , then these are
generically the only phase-locked solutions of the form (5).

Proof. We first prove the existence of in-phase and antiphase
solutions, that is, solutions to Eqs. (8) and (9), for any given
value of intrinsic frequency ω and mean delay τ . Consider
the function of �0 defined by the right-hand side of Eq. (8),
that is, the mapping �0 �→ ω + εg(−�0τ ). This function is
continuous and bounded on R (since g is continuous and
periodic) and so has a fixed point in R by intermediate value
theorem. Hence, for any given ω and τ , Eq. (8) always has
a solution �0. By a similar argument, Eq. (9) always has a
solution �π . Now, to determine the stability of solutions of
the type (5), consider small perturbations ui around it, i.e.,

θi(t) =
{
�t + ui(t), i ∈ A,

�t − φ + ui(t), i ∈ B.
(10)

Substituting into Eq. (1) yields the linear variational equation

u̇i(t) =
{

g′(−�τ − φ) ε
ki

∑
j∈B aij

(∫ ∞
0 uj (t − s)f (s)ds − ui(t)

)
for i ∈ A

g′(−�τ + φ) ε
ki

∑
j∈A aij

(∫ ∞
0 uj (t − s)f (s)ds − ui(t)

)
for i ∈ B,

(11)

where the prime indicates the derivative. Note that since g is a periodic function of period 2π , so is its derivative g′; thus for φ

equal to either 0 or π one has g′(−�τ − φ) = g′(−�τ + φ). Consequently, Eq. (11) can be written as a single expression

u̇i(t) = β
1

ki

N∑
j=1

aij

(∫ ∞

0
uj (t − s)f (s) ds − ui(t)

)
, i = 1, . . . ,N, (12)

where β = εg′(−�τ − φ) = εg′(−�τ + φ). If β > 0 and
the network has a spanning tree, then Theorem 4.2 of [25]
implies that solutions of (12) satisfy limt→∞ ui(t) = c for
some constant c and all i. Therefore, the oscillator phases
(10) approach again a solution of the form (5), which proves
the stability statement.

It remains to show the instability of (12) when β < 0. By
direct construction it can easily be seen that (12) has a diverging
solution. Hence we take

ui(t) =
{
eλt for i ∈ A

−eλt for i ∈ B.
(13)

Substitution into Eq. (12) gives

λ = −β(1 + F (λ)), (14)

where F (λ) = ∫ ∞
0 e−λsf (s)ds is the Laplace transform of f .

We show that Eq. (14) has a real solution λ > 0 and thus
Eq. (13) is a diverging solution to (12). To this end, consider the
right-hand side of Eq. (14) as a real-valued function H (λ) :=
−β(1 + F (λ)) defined on [0,∞). Since by assumption β < 0

and by Eq. (2) |F (λ)| � 1 for λ � 0, we have 0 � H (λ) �
2|β| for λ � 0. Thus H is a continuous function mapping the
interval [0,2|β|] into itself. It follows by Brouwer’s fixed-point
theorem that H has a fixed point in [0,2|β|], namely, a solution
λ � 0 to (14). Finally note that λ �= 0 since H (0) = −2β �= 0
and thus there must be a solution to (12) of the form (13) with
some λ > 0. This completes the proof. �

Note that the theorem above gives a set of conditions for
the stability of both in-phase and antiphase solutions, one or
more of which may be simultaneously satisfied. Specifically,
in-phase solutions with frequency �0 are stable if

εg′(−�0τ ) > 0 (15)

and antiphase solutions with frequency �π are stable whenever

εg′(−�πτ + π ) > 0, (16)

where �0 and �π are solutions of the transcendental equations
(8) and (9), respectively. It is possible that Eqs. (8) and (9) have
multiple solutions and both Eqs. (15) and (16) are satisfied for
a given set of parameter values, suggesting a rich structure
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of coexisting in-phase and antiphase synchronous solutions
with different frequencies. In the next section we will present
details of this multistable behavior.

III. MULTISTABILITY OF SYNCHRONIZED SOLUTIONS
IN KURAMOTO OSCILLATORS

The complex structure of synchronized solutions can be
illustrated for the case g(x) = sin(x), namely, a bipartite
network of Kuramoto oscillators [19]

θ̇i = ω + ε

ki

N∑
j=1

aij sin

(∫ ∞

0
θj (t − s)f (s)ds − θi(t)

)
.

(17)

The condition (6) for the existence of phase-locked solutions
takes the form

sin(−�τ − φ) = sin(−�τ + φ), (18)

which simplifies to

sin(φ) cos(�τ ) = 0, (19)

and thus in the generic case the only possible phase-locked
solutions are in phase or antiphase (namely, φ = 0 or π ). By
Eqs. (8) and (9), the collective frequencies are given by the
roots of the transcendental equations

�0 = ω − ε sin(�0τ ) for in-phase solutions,

�π = ω + ε sin(�πτ ) for antiphase solutions.
(20)

Following Eqs. (15) and (16), the in-phase synchronized
solution will be stable when

ε cos(�0τ ) > 0, (21)

while the antiphase synchronized solution will be stable when

ε cos(�πτ ) < 0. (22)

For numerical calculations we use a complete bipartite network
with NA = NB = 3 [see Fig. 1(d)], normalize the intrinsic
frequency to ω = 1, and start from random initial conditions.
Furthermore, it suffices to consider a fixed discrete delay τ ,
i.e., f (s) = δ(s − τ ), since the stability condition given in
Theorem I depends only on the mean value of the delay.

Figure 2 shows numerical and analytical results [from
Eqs. (20)–(22)] for the stable in-phase and antiphase solutions.
Note that there are ranges of τ where only a single frequency
is stable, as well as ranges of τ where several frequencies
correspond to stable motion. The latter multistable regions are
indicated by dashed boxes and, as can be seen, the width of
these regions of multistability increases with increasing delay
τ . For larger coupling, multistability can be observed for even
fairly small delays [Fig. 2(c)].

The agreement between numerical simulations and the
results of the analysis in Eqs. (20)–(22) is generally excellent.
Regions of different dynamical behavior in the ε-τ plane are
shown in Fig. 3. Multistability that is seen in this system is
an important effect of time delays and becomes even more
pronounced at higher values of τ and ε: Figure 4 shows
that the number of stable in-phase and antiphase solutions
increases as a function of delay and coupling strength. The
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FIG. 2. (Color online) (a) Frequencies of stable phase-locked
solutions of coupled Kuramoto oscillators (17), as given by Eq. (20) as
a function of the mean delay τ (we set ε = 0.05). (b) Corresponding
phase difference between the partitions, which is either zero or π . The
blue (dark gray) and red (light gray) curves correspond to in-phase
�0 and antiphase �π solutions, respectively. Their overlaps, shown
by dashed boxes in (a) and (b), indicate regions of multistability.
Simulation results from the system (17), shown by green triangles,
for frequencies and phase differences between the two partitions
are matched with analytical results in (a) and (b), respectively.
(c) Variation of the frequencies with the coupling strength, calculated
from Eq. (20), for ε = 0.05 (dots), 0.25 (triangles), and 0.5 (crosses).
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FIG. 3. (Color online) Dynamical phase diagram as a function of
the parameters ε and τ . In the blue (dark gray) regions, only in-
phase synchronized solutions are stable, whereas in the red (medium
gray) regions only antiphase solutions are stable. In the gray (light
gray) region there is multistability with several in-phase and antiphase
solutions coexisting.
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FIG. 4. (Color online) Variation of the number of stable in-phase
and antiphase solutions as a function of (a) coupling strength ε and
(b) mean delay τ .

increase is essentially linear (modulo the fact that the number
of solutions must jump between integer values), so the number
of stable solutions can be made arbitrarily large, whereas the
possible values of the collective frequency � are bounded
since by Eq. (20),

|� − ω| � |ε| (23)

for both in-phase and antiphase solutions.
While the coupling strength puts a bound on the deviation

of the synchronous frequency � from the intrinsic one ω, the
time delay only affects the actual value of � within the bound.
For a fixed coupling strength ε, on the other hand, increasing
the delay increases the number of stable solutions within the
frequency interval given by Eq. (23), as can be seen in Fig. 5.
In this manner, the time delay effectively acts as a frequency
selector in a range that is determined by the coupling strength.

However, as the number of stable solutions increases, their
domains of attraction become smaller and the actual oscillation
frequency of the coupled system becomes more sensitive to
external perturbations (see Fig. 6). Under such circumstances,
as may be anticipated, the system exhibits hysteresis when
system parameters (e.g., the delay) are increased and then
decreased back to their original value (see Fig. 7).

IV. ANALYTIC FORMS FOR SOLUTION BRANCHES

In this section we present the analytical basis for the
numerical observations of Sec. III. Setting g(x) = sin x, from
Eq. (8) we have for in-phase solutions

τ = − 1

�0
arcsin

(
�0 − ω

ε

)
(24)
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FIG. 5. (Color online) Variation of the number of stable solutions
as a function of the time delay, at a fixed coupling strength ε = 0.5.
In (a), the blue dots indicate in-phase and the red crosses antiphase
solutions. The range of solutions remain bounded in the range from
1 − ε to 1 + ε, while the number of solutions increases with the delay
as shown by solid green line in (b). The number of solutions (shown
as red triangles) are calculated by counting the intervals satisfying
Eqs. (26) and (27) for delay values τ = nπ/ω, n = 1,2, . . . (details
in Sec. IV).
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FIG. 6. (Color online) Numerically computed frequencies (green
triangles) of the Kuramoto oscillators plotted as a function of delay
τ at coupling strength ε = 1.0. We take a complete bipartite network
with NA = NB = 3. The analytically computed frequencies (in-phase
and antiphase) are represented by the dots. A large number of stable
frequencies have values very close to each other and depending on
initial conditions the system settles into one of these in the range
[1 − ε,1 + ε] = [0,2].
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FIG. 7. (Color online) Hysteresis curves in the multistability
regime. (a) Collective frequency � and (b) phase difference φ when
τ is varied in steps of δτ from 0 to 4 and in steps of −δτ from 4 to 0
(δτ = 0.01, ε = 0.05).

and from Eq. (9) for antiphase solutions

τ = − 1

�π

[
arcsin

(
�π − ω

ε

)
+ π

]
. (25)

Since the argument of the arcsin is restricted to the range
[−1,1], this gives (ω − ε) < �0,π < (ω + ε). (We assume
ω > ε for simplicity.) Over this range of �, the relation given
by Eqs. (24) and (25) can be plotted on the �-τ plane, yielding
curves similar to those shown in Fig. 8 [cf. Fig. 2(a)]. The figure
actually depicts only the stable solutions, which are determined
as follows. By Theorem I, the in-phase solution is stable for
ε cos(�0τ ) > 0, namely, for −π

2 + 2kπ < �0τ < π
2 + 2kπ ,

with k ∈ N. Using the limits on �, this gives the range of τ

(ω
−ε

)
ω

(ω
+ε

)
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Ω
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FIG. 8. (Color online) Collective synchronous frequency � (ver-
tical axis) from Eqs. (24) and (25) plotted against the mean delay τ

(horizontal axis). Stable solution branches are indicated by Bn, where
even and odd values of n indicate in-phase and antiphase branches,
respectively. The dashed boxes are the region of multistability and
the dotted boxes, indicated by the arrows, show the highest number
of overlaps, three overlapping branches in this case.

for the stable in-phase solution as

π

ω + ε

(
−1

2
+ 2k

)
< τ <

π

ω − ε

(
1

2
+ 2k

)
. (26)

For every k ∈ N there is a branch of in-phase solutions, shown
by the blue curves in Fig. 8. A similar calculation gives the
range of τ for stable antiphase solutions as

π

ω + ε

(
−1

2
+ (2k + 1)

)
< τ <

π

ω − ε

(
1

2
+ (2k + 1)

)
,

(27)

shown by the red curves in Fig. 8. Combining Eqs. (26) and
(27), we obtain branches of stable solutions Bn in the �-τ
plane: On each branch, τ varies over the interval

In :=
(

π (n − 1/2)

ω + ε
,
π (n + 1/2)

ω − ε

)
(28)

and � is uniquely defined by the solution of Eqs. (8) and (9).
Even and odd values of n correspond to in-phase and antiphase
solution branches, respectively.

Note that the length of the interval In equals

πn

(
2ε

ω2 − ε2

)
+ π

(
ω

ω2 − ε2

)
. (29)

Furthermore, the point τn := nπ/ω belongs to In for all n ∈ N
(corresponding to the frequency � = ω). The branches start
overlapping with increasing n since the points {nπ/ω}n∈N are
equally spaced on the real line, but the length of In increases
linearly with n. We can determine the number of overlaps as
follows. Clearly, branch Bn overlaps branch Bn+m when the
right end point of the former exceeds the left end point of the
latter. By Eq. (28), the condition is

n + 1/2

ω − ε
� n + m − 1/2

ω + ε
,

which, after rearranging, gives

m � 2εn + ω

ω2 − ε2
.

Since m must be an integer, we arrive at the formula for the
number of overlaps m:

m =
⌊

2εn + ω

ω2 − ε2

⌋
, (30)

where 	·
 denotes the floor function, i.e., the largest integer
less than or equal to its argument. Equation (30) shows that
the number of overlaps m increases linearly with n. As noted
above, we have τn = nπ/ω ∈ In. Therefore, the number of
coexisting stable synchronized solutions increases essentially
linearly with increasing mean delay τ and grows unbounded
[cf. Fig. 4(b)]. (The number of overlaps of the branches Bn

does not always strictly increase with τ , as can be seen from
Fig. 8, hence the phrase “essentially linear.”) Shown in Fig. 8
are several windows of multistability (the dashed green boxes).
With increasing mean delay, the width of these windows
increases linearly.

The discussion above applies also for general differentiable
coupling functions g and not only for the sine function that
we have used for definiteness. Indeed, restricting attention
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to domains over which g is strictly increasing or strictly
decreasing, one finds intervals on which g can be inverted,
thus obtaining solution branches on which

τ = − 1

�0
g−1

(
�0 − ω

ε

)
or

τ = − 1

�π

[
g−1

(
�π − ω

ε

)
+ π

]
,

similar to Eqs. (24) and (25). The stability can be checked
using Theorem I and the remainder of the analysis proceeds in
an analogous manner.

V. APPLICATIONS TO COUPLED LIMIT-CYCLE
AND CHAOTIC OSCILLATORS

The analysis carried out in the preceding sections has a
wider range of application, beyond coupled phase oscillators.
As is well known, it is sometimes possible to define
appropriate phase variables for coupled higher-dimensional
limit cycle or even chaotic oscillators that, under suitable
approximations for the amplitudes, are governed by equations
of the form (1). In this section we use these ideas to deduce
the behavior of bipartite networks of delay-coupled limit
cycle and chaotic oscillators.

A. Landau-Stuart oscillators

The Landau-Stuart system is a simple limit-cycle oscillator
that can be viewed as a normal form for the Hopf bifurcation.
The equations of motion for such oscillators coupled with time
delay are given by

Żi = (A + iω − |Zi |2)Zi + ε

ki

N∑
j=1

aij (Zj (t − τ ) − Zi),

(31)

where Zk = xk + iyk is a complex variable, ω is the intrinsic
frequency of the oscillators, and ε is the coupling strength. We
set the parameter A = 1 for numerical calculations. Following
the reduction procedure [26] by transforming Eq. (31) into
polar coordinates θi = arctan(yi/xi) and Ri =

√
x2

i + y2
i , we

obtain the following equations for the amplitudes:

Ṙi = Ri

(
1 − ε − R2

i

)
+ ε

ki

N∑
j=1

aijRj (t − τ ) cos[θj (t − τ ) − θi] (32)

and the phases

θ̇i = ω + ε

ki

N∑
j=1

aij

Rj (t − τ )

Ri(t)
sin[θj (t − τ ) − θi]. (33)

When the amplitudes are nearly equal, namely, Ri/Rj ≈ 1,
the equations for the evolution of oscillator phases reduce to
the standard Kuramoto form and we find the reduced phase
equation

θ̇i = ω + ε

ki

N∑
j=1

aij sin[θj (t − τ ) − θi]. (34)
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FIG. 9. (Color online) Variation of frequencies with mean de-
lay in coupled Landau-Stuart oscillators on a bipartite network
(NA = NB = 3). Blue and red lines (indicated by �0 and �π ) are,
respectively, the in-phase and antiphase frequencies calculated from
the transcendental equations (20) at ε = 1.0. Green triangles are the
numerically calculated frequencies from the system (31).

The phase dynamics of the coupled Landau-Stuart system (31)
is therefore identical to that of the Kuramoto system (17)
for the same values of ε and τ (see Figs. 9 and 10). The
phase-locked solutions can have a phase difference of φ = 0
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1
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0

1
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(a)

(b)

(c1) (c2)

time

time

time time

x 1,  
x 4

x 1,  
x 4

x 1,  
x 4

FIG. 10. (Color online) Behavior of coupled Landau-Stuart os-
cillators on a bipartite network (NA = NB = 3) for coupling strength
ε = 0.05. After removing transients, the variable x(t) for oscillators
i = 1 ∈ A (solid red line) and i = 4 ∈ B (dashed green line) is plotted
as a function of time. The behavior of the system is identical to
that of coupled Kuramoto oscillators at the same parameter values.
(a) At τ = 3.0, the oscillators from different partitions are antiphase
synchronized. (b) At τ = 5.0, the oscillators from different partitions
are in-phase synchronized. (c) Oscillators show multistable behavior
at τ = 17.0. Here two different initial conditions lead to (c1) in-phase
and (c2) antiphase states.
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or π and the collective frequencies satisfy Eq. (20) as before.
Figure 9 shows that the analytically calculated frequencies
from Eq. (20) are in very good agreement with numerical
results. Furthermore, it is straightforward to see when the
coupled system exhibits in-phase or antiphase synchrony, as
shown in Fig. 10.

B. Rössler oscillators

For chaotic Rössler oscillators diffusively coupled (via the
variable x) with time delay, the equations of motion are

ẋi = −ωyi − zi + ε

ki

N∑
j=1

aij (xj (t − τ ) − xi(t)),

ẏi = −ωxi + ayi, (35)

żi = f + zi(xi − c),

where a, f , c, and ω are system parameters. The phase
dynamics of the system, with some approximations, can be
reduced to the Kuramoto case [26]. In a phase coherent
regime, the amplitude and phase of the oscillators can be
defined by introducing the variables Ai =

√
x2

i + y2
i and �i =

arctan(yi/xi) [27,28]. The dynamics of the system in terms of
A, �, and z is then given by

Ȧi = aAi sin2 �i − zi cos �i + ε

ki

N∑
j=1

aij

× (Aj (t − τ ) cos �j (t − τ ) cos �i − Ai cos2 �i),

θ̇i = ω + a sin �i cos �i

+ zi

Ai

sin �i − ε

ki

N∑
j=1

aij

×
(

Aj (t − τ )

Ai

cos �j (t − τ ) sin �i − sin �i cos �i

)
,

żi = f − czi + Aizi cos �i (36)

for i = 1,2, . . . ,N . We analyze the system by averaging
over the rotations of the phases �i [27,29]. Assuming that
the amplitudes vary slowly, new slow phases ϕi can be
introduced through the substitution �i = ω0t + ϕi . Averaging
the equations we get

ω0 + ϕ̇i = ω + ε

ki

N∑
j=1

aij

×
(

Aj (t − τ )

2Ai

sin[ϕj (t − τ ) − ϕi(t) − ω0τ ]

)
.

(37)

The substitution ϕi(t) = θi(t) − ω0t transforms these equa-
tions to a corotating frame of frequency ω0 and we find

θ̇i = ω + ε

ki

N∑
j=1

aij

Aj (t − τ )

2Ai

sin[θj (t − τ ) − θi(t)]. (38)
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FIG. 11. (Color online) Rössler oscillators on a bipartite network
(again with NA = NB = 3 and a = 0.2, f = 0.2, c = 1.0, and ω =
1.0 taken for the numerics). The green triangles are the numerically
calculated frequencies from the system (35) at coupling strength ε =
2.0. The blue and red lines (indicated by �0 and �π ) are, respectively,
the in-phase and antiphase frequencies for the systems calculated
from the transcendental equation (40) at equivalent coupling strength
K = ε/2 = 1.

Under the assumption that Ai ≈ Aj ∀i,j , the equations for
phases can be written as

θ̇i = ω + K

ki

∑
j∈B

aij sin[θj (t − τ ) − θi(t)], (39)

where K = ε/2. Note that this reduced equation is similar
to that of Landau-Stuart oscillators (34), the only difference
being that the effective coupling strength K is reduced by a
factor of 2. With this in mind, the analysis of previous sections
is applicable and the collective frequency � now satisfies the
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FIG. 12. (Color online) Identical Rössler oscillators in the
chaotic regime a = 0.2,f = 0.2,c = 9.0,ω = 1.0 for coupling
strength ε = 2. The attractor in the x-y plane for one of the oscillators
is plotted for delays (a) τ = 3.0 and (c) τ = 13.0. The variable x(t)
for oscillators i = 1 ∈ A (solid red) and i = 4 ∈ B (dashed green)
are plotted in (b) and (d) as a function of time. (b) At τ = 3.0, the
oscillators from different partitions are in antiphase synchrony and
(d) at τ = 13.0, oscillators are in-phase synchronized. There are three
oscillators in each partition, NA = NB = 3.
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equation [cf. Eq. (20)]

�0,π = ω ∓ ε

2
sin(�0,π τ ). (40)

Figure 11 shows that the values of the collective frequency
calculated from Eq. (40) are in good agreement with numerical
results in the periodic regime (parameter c = 1.0). Similarly,
the regions of phase space when the coupled system settles into
in-phase or antiphase synchrony can be estimated via the above
analysis. Even though the frequency estimation for the chaotic
case (c = 9.0) is not straightforward, we still can observe the
in-phase and antiphase behavior in the chaotic time series at
two different delays, as shown in Fig. 12.

VI. CONCLUSION

Bipartite topologies are frequently encountered in a variety
of naturally occurring networks. We have studied the dynamics
of identical oscillators that are coupled with distributed time
delays in such a geometry and examined the different phase-
locked regimes that can arise. There are two resultant stable
configurations when the system is in synchrony. Although the
oscillators evolve to a common collective frequency, between
the partitions there can be a phase difference of either 0 or π

radians. These are the only possible phase-locked solutions in
bipartite networks of identical oscillators. We have analyzed
general bipartite networks with distributed coupling delays,
established the existence of these two kinds of solutions, and
derived conditions for their stability.

A consequence of the time delay is that there can be
more than one stable oscillation frequency; multistability is
therefore frequently encountered with such coupling. We have
shown that the number of stable solutions increase linearly
with increasing delay or with increasing coupling strength.

The system can then exhibit hysteresis and sensitivity to
disturbances and the collective frequency jumps to a different
value or the phase difference between the partitions switches
between 0 and π , as the system moves from one attractor to
another. There is the further possibility of synchronizing to
any frequency in a certain interval by choosing an appropriate
delay. Results have been presented for simple phase oscillators,
for which the analysis is exact, as well as paradigmatic
examples such as Landau-Stuart and Rössler oscillators, whose
phase dynamics can be reduced to the Kuramoto model under
appropriate conditions. In all these examples, analytical and
numerical results are in very good agreement.

Several studies have focused on understanding collective
behavior of oscillators on various types of networks, both with
and without time delay. In addition to the phenomenon seen
here, namely, the separation of the network into groups of
individually phase-synchronized oscillators, there are a variety
of other possible dynamical states [23] and even within the
framework of bipartite topology it is clear that more general
situations need to be addressed. For example, the role of hetero-
geneity, both in the individual oscillators and in the coupling,
needs to be investigated. The manner in which departures from
this topology, for instance, the introduction of a few additional
connections, modifies these results is also of interest. These
and similar questions have been investigated in Ref. [30].
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254101 (2010); V. Flunkert and E. Schöll, New J. Phys. 14,
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