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Delay-induced remote synchronization in bipartite networks of phase oscillators
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We study a system of mismatched oscillators on a bipartite topology with time-delay coupling, and analyze
the synchronized states. For a range of parameters, when all oscillators lock to a common frequency, we find
solutions such that systems within a partition are in complete synchrony, while there is lag synchronization
between the partitions. Outside this range, such a solution does not exist and instead one observes scenarios
of remote synchronization—namely, chimeras and individual synchronization, where either one or both of the
partitions are synchronized independently. In the absence of time delay such states are not observed in phase

oscillators.
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I. INTRODUCTION

A wide variety of collective phenomena in nature can be
studied through models of interacting dynamical units [1-5].
A common structure that has been explored in such studies
is the bipartite network [6—13], namely, the situation when
the system can be divided in two subsets such that units in one
subset or partition only interact with units in the other partition
and not with any unit in the same partition. Examples of such
networks include units connected in a chain, stars, trees, or
rings with an even number of nodes.

In any realistic experimental situation, perfectly identical
systems are difficult to engineer, and thus the situation above
is frequently encountered in practice. In addition to hetero-
geneities which arise naturally due to dissimilarities in intrinsic
parameters, it is also necessary to consider heterogeneity in
connection topology as well as in the coupling; these also
modify the behavior of the system, affecting synchronization
[14,15] or causing riddling [16] or amplitude death [17]. Time
delay is inherent in the coupling when there is a finite speed in
the signal propagation. It is also known that these effects can
change the nature of the dynamical states quite significantly
[18-20].

In the present paper we consider delay-coupled phase oscil-
lators on a bipartite network similar to the one schematically
depicted in Fig. 1, all oscillators in a partition being coupled to
all oscillators in the other. Oscillators in the two partition are
mismatched, namely, they have different inherent frequencies.
We find that this system can exhibit both global [5] as well
as remote synchronization (RS) [21,22]. In the former case,
oscillators in both partitions lock on to a common frequency,
although a phase difference between the set of oscillators in the
two partitions can arise. Depending on the mismatch, namely,
the difference in the inherent frequencies of the partitions, the
phase difference between the oscillators in the two partitions
can be either zero or can be approximately 7.

Remote synchronization describes the situation where
oscillators that are coupled indirectly through a relaying
oscillator become phase synchronized. They are, however,
unsynchronized with the relaying (or transmitting) oscillator.
This form of synchrony has been discussed in detail recently
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for mismatched oscillators coupled without delay, and the
analysis has been in terms of the amplitude of oscillations
[21,22]. There are two manifestations of RS in this system.
In the first case, oscillators in the two partitions lock on
to different time-dependent frequencies causing individual
synchronization of the partitions. The second form of RS is
more interesting: there can be chimera states with all oscillators
in one partition being phase coherent while all the oscillators
in the other partition are not. Such states, with coexisting
coherent and incoherent groups of oscillators, have attracted
considerable attention in recent years, and have typically been
seen in networks of nonlocally coupled oscillators [23,24].

In Sec. II of this paper we introduce the system of delay-
coupled mismatched phase oscillators on a bipartite network,
and discuss criteria for the existence of globally synchronized
solutions. By examining oscillator frequencies and phase
response, the behavior of the system is analyzed within these
regions. Remote synchrony is discussed in Sec. III and we use
the Kuramoto order parameter to identify different scenarios of
remote synchronization that are observed in various regions of
the parameter space. Finally, Sec. IV summarizes our main
results; the possibility of RS in coupled phase oscillators
suggests that this phenomenon has considerable generality and
is thus worthy of further study.

II. PHASE OSCILLATORS ON A BIPARTITE NETWORK

The two partitions are denoted A and B, and the dynamics
of the phase oscillators in each partition are determined by the
evolution equations
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where 6;(¢) is the phase of ith oscillator at time ¢. There
are Ny and Np oscillators in the two partitions, and their
intrinsic frequencies are w4 and wp, respectively. These can
be written in terms of the mean, ® = (w4 + wp)/2, and the
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FIG. 1. Schematic diagram of the bipartite network studied here
where the nodes separate into two groups denoted A and B. We
consider phase oscillators at each node, with coupling of strength &
and delay 7 only between oscillators belonging to different partitions
or groups. In numerical calculations we have taken 32 oscillators in
each partition.

mismatch Aw/2; ws p = @ £ Aw/2. The coupling strength is
¢. Elements of the adjacency matrix, a;; = 1 if the ith and jth
oscillators are connected, and zero otherwise, and k; = > ; aij
counts the number of links to the ith oscillator.

A. Globally synchronized solutions

Global synchronization is established in a network when
all the oscillators are entrained to a common frequency €2. The
solutions are given, generally, as

. {Qt—¢/2, if icA

i €B, @

Qt+¢/2, if

where ¢ is the phase difference between the partitions.
Substituting this solution into Eq. (1), the condition for phase
locking requires

Q =wy +esin(—Rt — @) = wp + €sin(—Q7t + ). (3)

This leads to the following transcendental equation for the
synchronization frequency €2,

Q: = @ T e tan(Q57)v/cos2(Q7) — (Aw/26)?,  (4)
while the phase difference ¢ between the partitions is given by

Lo ), if cos(Qr) >0

2¢e cos(Q21)
7 — arcsin ( if  cos(Qt) < 0.
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Aw (5 )
2¢e cos(Q2T) ) ’

There are two possible solutions, and the respective stability
conditions are [25]

cos(—Qt — ¢) > 0 and cos(—t + ¢) > 0. (6)

For identical oscillators, when Aw =0 and ® = w, the
only possibilities are in-phase (¢ = 0) and antiphase (¢ = )
solutions, with corresponding frequencies given by the roots
of

Qor = F esin(Qo 7). @)

The in-phase solution is stable [see Eq. (6)] when
cos(Q2t) > 0, while the antiphase solution is stable when
cos(R2t) < 0[13].
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FIG. 2. (Color online) Analytically calculated plots of (a) syn-
chronized frequencies 2, and (b) phase difference ¢, shown with
symbols (circles and triangles) as a function of delay 7, for Aw = 0.2
and ¢ = 0.125. Numerically obtained frequencies from the system
Eq. (1) are plotted with lines (dashed blue and solid red) in (a) and
the phase difference with red dots in (b).

B. Desynchronized regions

For a network of identical oscillators, it is clear that real
solutions to Eq. (7) will exist for all values of ¢ and t. With
frequency mismatch, though, the condition

) Aw\?
cos*(Qr)—(—) >0, (8)
2¢
or assuming coupling strength ¢ > 0,
|Aw]|
[cos(QT)| =2 ——, )
2¢

0.2 0.4 0.6 0.8 1
€

FIG. 3. (Color online) Behavior of the system in the (¢,7) plane
for a fixed frequency mismatch Aw = 0.2. The hatched region
represents the parameter values where synchronized solutions Eq. (2)
do not exist. In the blue (dark gray) region, only the solutions €2_ are
observed, and only 2, frequencies are observed in the red (medium
gray) region while both coexist in the multistable region shown in
gray (light gray). The dashed vertical line at ¢ = Aw/2 = 0.1 is the
limit below which Eq. (9) is not satisfied for any delay value.
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FIG. 4. (Color online) Time averaged frequencies of the oscilla-
tors from both partitions Q4 € A (dashed blue) and Qz € B (solid
red) are plotted as a function of the time delay t. For regions I and
V, frequencies are equal and independent of time. One partition is
synchronized while the other remains incoherent in regions II and IV.
In region I1I, both partitions are separately synchronized.

is the criteria when the transcendental equation for the
collective frequency, namely, Eq. (4), has real solutions. There
can, therefore, be regions in the (¢,7) plane where solutions
of the form Eq. (2) do not exist: frequency entrainment
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of all oscillators to a common value, and hence global
synchronization, is not possible.

Figure 2 graphically displays the global behavior of an
ensemble of oscillators as a function of the time delay t.
The condition Eq. (9) is satisfied over specific ranges when
there is global synchrony. These can be identified as those
regions where the simulation data shown matches the results of
analytic estimations from Eq. (4) for the oscillator frequencies
[Fig. 2(a)] and for the interpartition phase difference, plotted
in Fig. 2(b). As can be seen, the analytical estimates [from
Eq. (4)], namely, Q2_ (green circles) and 2, (green triangles),
are in excellent agreement with the numerical results [26] (see
the figure caption for the details).

The portions indicated by W; and W, in Fig. 2 are regions
of asynchrony, where the condition Eq. (9) is not satisfied. The
oscillators in the two partitions can show two types of behavior:
either near-coherence in one partition with oscillators in
the other partition being incoherent, or a global lack of
coherence in both partitions. In either case, the interpartition
phase difference changes with time and takes arbitrary values
between 0 and  [see Fig. 2(b)].

The behavior of the system as a function of coupling
strength and time delay is summarized in Fig. 3 for a fixed level
of mismatch in the frequencies of the uncoupled oscillators.
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FIG. 5. (Color online) In the right panel, time variation of frequencies of four oscillators (Q’X € A,QZ € B), are plotted with blue (lower)
curves and red (upper) curves, respectively. The frequencies of the two chosen oscillators from each partition is shown with solid and dashed
lines. The corresponding phase dynamics is plotted in the left panel. The frequencies for the two partitions are equal and constant in time for
(a) and (e). (b) and (d) indicate chimeras, as only one of the partitions is locked to a time dependent frequency while the other partition is phase
incoherent. In (c), the oscillators in both partitions are separately synchronized.
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In the hatched area, synchronized solutions cannot exist, and
this region grows in size with increasing mismatch. The
colored regions (blue, red, and gray) have at least one stable
synchronized solution, with the solution corresponding to €2_
being stable in the blue region, €2, in the red region, and both
being stable in the gray region.

The width of desynchronized windows W; and W, can be
controlled by varying the ratio Aw/2¢. We observe that these
windows disappear for small mismatch and high coupling
strengths. Increasing the ratio Aw/2¢ leads to the larger gaps,
and when |Aw| > 2¢ no globally synchronized solution is
possible in the system for any delay (see dashed vertical line
in Fig. 3).

III. TIME-DEPENDENT FREQUENCIES AND REMOTE
SYNCHRONIZATION

In the asynchronous region, the general form of the solution
for the system Eq. (1) can be written as

0i(1) = Gi(1) + i, (10)

where G; is a nonlinear function of time and ¢; is the time-
independent part. (In the synchronized regime, by contrast,
G;(t) = Qt and the collective frequency €2 is constant in time).
The frequencies, which are given by 6;(1) = G;(r), are such
that their time averages are the same for all oscillators within
a partition, namely,

G Qu, if i€A, 1

< ’(t»_{QB, if ie€B. (n

A typical result is shown in Fig. 4 for Aw = 0.2 and ¢ =
0.125, with Q4 € A (dashed-blue line) and Qp € B (solid-red
lines) plotted as a function of the time delay t. Five regions are
indicated: in regions I and V, there is global synchrony, Q,,
Qp are equal and match the analytical frequencies, namely,
the roots of Eq. (4), Q4 = Qp = Q. In regions II, III, and TV,
where Eq. (4) has no roots, then we have equal intrapartition
and different interpartition average frequencies (4 # Q5p),
leading to the bubblelike structures in Fig. 4. There are abrupt
transitions in the average frequencies between these regions,
though, corresponding to different types of coexisting states
in the two partitions.

These different states are depicted in Fig. 5. The time-
dependent behavior of the frequencies is shown in the right
panel, along with the phases in the left panel. Frequencies
of two randomly selected oscillators from both partitions are
plotted in blue (lower) and red (upper) curves, indicated by Q'

and Q' , respectively. Regions I and V of Fig. 4 correspond to
Figs. 5(a) and 5(e), and here the frequencies of all oscillators
in the network are equal and constant in time; this is the
globally synchronized state. In region II [panel (b)], region III
[panel (c)], and region IV [panel (d)], the frequencies are time
dependent and unequal for the two partitions. For the delay
corresponding to Fig. 5(c), the frequencies of the oscillators
in each partition are equal but time dependent, and thus each
partition is separately synchronized, but €24(¢) # Q5(t). For
other values of the delay, there are chimeras—see Figs. 5(b)
and 5(d)—with oscillators in one partition locked to a common
(but time-dependent) frequency, while the oscillators in the
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time

64 32 64
T=4.75(IS) T1=5.5(CS)
—_—
N

1=3.0(GS)

T=4.0(CS)

FIG. 6. (Color online) Time evolution of oscillator phases at four
different delay values (N = 64). When 7 = 3.0, both partitions
are globally synchronized (GS) with equal frequencies and have a
nonzero phase difference. For 7 = 4.0 and 5.5, we see chimera states
(CS) where only one of the partitions is synchronized. Individual
synchronization (IS) is observed for t = 4.75 wherein both partitions
are independently synchronized.

other partition are phase incoherent, although they all have
similar time-dependent frequencies.

The dynamics in regions II, IIl, and IV in Figs. 4
and 5 are instances of remote synchronization where one, or
separately, both partitions are synchronized. Synchronization
in these regions share the feature that the phases are locked
even if the frequencies are not constant in time. Since the
oscillators within a partition are not coupled to each other,
this synchronization is induced by the other partition which
itself may not be synchronized. The time evolution diagrams
of oscillator phases corresponding to different behaviors in
these regions are shown in Fig. 6. With the variation in
delay, transitions between these behaviors are accompanied

FIG. 7. (Color online) Variation of the real parts 4 and rg of the
partition order parameters as a function of the time delay t.
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FIG. 8. (Color online) Level sets of the order parameter r as a
function of ¢ and 7, demarcating the regions of different scenarios
of remote synchronization. Red regions (CS) indicate chimera states
(r = 0.5), and yellow regions (IS) are where both the partitions are
independently synchronized (» & 1). In black regions (IR) oscillators
in both the partitions move incoherently (r =~ 0). Blank white regions
(GS) represent globally synchronized solutions Eq. (2). The vertical
dashed line at ¢ = Aw/2 = 0.1 indicates the threshold for the
existence of GS solutions.
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by a discontinuous change in time averaged frequencies of
individual partitions (see Fig. 4).

Partition order parameters

It is natural to use the well-known complex order parameter
[5] defined in each partition, namely,

1
24 = raeVt = ~ > e, (12)
A JjeA
1
zp =rpelt = o Ze“gf, (13)
B 7
jeB

in order to distinguish the different dynamical behaviors of the
system in the regions where synchronized solutions, namely,
of the form Eq. (2), do not exist. The real parts r4 p of
the complex order parameters measure the coherence, values
close to 1 indicating that the oscillators within a partition are
synchronized. Here we focus upon the real parts only since the
average phases ¥4 p show irregular variations as a function of
coupling parameters and hence do not carry much information
about the coherence.

A typical result is shown in Fig. 7 for the parameter values
Aw = 0.2 and ¢ = 0.05, where the variation of the real parts
r (dashed-blue line) and rp (solid-red lines) are plotted as
a function of delay. In a chimeric state when one of the
partitions is synchronized and the other is out of sync, then
one of r4 or rg is &~ 1 while the other is around 0. In a
scenario when both partitions are individually synchronized
(region III in Fig. 4), both r4 and rp are near 1. Similarly

(b)yt=4

FIG. 9. (Color online) Similar to Fig. 8 for different v values, as a function of Aw and ¢. The blank white regions (GS) show global
synchronization. Red regions (CS) indicate chimera state (r &~ (.5), and yellow regions (IS) represent when both the partitions are individually
synchronized (r = 1). In the black regions (IR) oscillators in both the partitions move incoherently (r ~ 0). The dashed curves show the

boundary below which globally synchronized solutions disappear.
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there is also the case when both r4 and rp are approximately
0, indicating incoherent behavior in both partitions. These
different states are clearly visible in the figure and inset. In
these regions one can also use the average r = (r4 + rp)/2 to
characterize the state. » &~ 0.5 for a chimera (CS), and r = 1
indicates a separate synchronization of both partitions (IS)
while r & 0 represents incoherent behavior in both partitions
(IR).

This quantity is shown in Fig. 8 as a function of the coupling
¢ and the delay t for fixed mismatch Aw = 0.2, and in Fig. 9
for different delays as a function of coupling and mismatch.
In both we observe chimeras (the red regions where r = (.5),
individual synchronization of the partitions (the yellow regions
where » ~ 1), and incoherent behavior (the black regions with
r & 0). The blank region in Fig. 9 shows the “Arnold tongue”
of globally synchronized solutions, given by the criterion
Eq. (9) with the collective frequency €2 being estimated as
the root of the transcendental equation, Eq. (4).

IV. SUMMARY AND DISCUSSION

Delay-coupled phase oscillators on a bipartite network
show interesting and novel collective states. In addition to
global synchrony when all the oscillators in the network
lock onto a common frequency, there can also be remote
synchronization, with different groups of indirectly connected
oscillators displaying distinct patterns of phase coherence.

For these effects to occur, both the time-delay coupling as
well as the bipartite topology appear to be important. Coupled
phase oscillators in the absence of time delay do not show
remote synchrony, and oscillators with local coupling but
without the bipartite topology have not hitherto been known
to support chimera states. Some analysis is possible in the
present system, and we are able to obtain a criterion for global
synchronization. We also locate regions in parameter space
where remote synchronization occurs.

PHYSICAL REVIEW E 91, 022922 (2015)

In these latter regions, namely, when there is RS, a delicate
balance must be achieved [21]. Since the oscillators that
synchronize are not directly connected, and they remain
unsynchronized with the mediating unit(s), remote synchro-
nization depends upon the frequency mismatch, on the network
topology, and also on the behavior of perturbations in the
relaying units. The mismatch between the frequencies must
be such that the oscillators that are coupled indirectly may
synchronize while avoiding frequency locking with the relay-
ing unit(s). Furthermore, the perturbations should not decay
rapidly in the relaying oscillators [21]. The introduction of time
delay achieves this and hence we find remote synchronization
even for phase oscillators. Note that RS observed here is
different from the symmetry-induced phase synchronization
in a network of identical oscillators where all the oscillators
lock to a common frequency [27].

A number of natural systems have the bipartite topology,
and significant delays also arise frequently in situations where
signals propagate with a finite velocity. Thus the present results
are likely to be fairly general. Qualitatively similar results are
obtained when the oscillator frequencies of both partitions are
drawn from Gaussian distributions with different means and
variances [28]. The occurrence of RS in a system of delay-
coupled phase oscillators suggests that these results may have
wider implications for neuroscience, brain research, climate
research, and other fields that involve delayed information
transmission [21,27,29].
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