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For an ensemble of globally coupled oscillators with time-delayed interactions, an explicit relation

for the frequency of synchronized dynamics corresponding to different phase behaviors is obtained.

One class of solutions corresponds to globally synchronized in-phase oscillations. The other class

of solutions have mixed phases, and these can be either randomly distributed or can be a splay state,

namely with phases distributed uniformly on a circle. In the strong coupling limit and for larger

networks, the in-phase synchronized configuration alone remains. Upon variation of the coupling

strength or the size of the system, the frequency can change discontinuously, when there is a transi-

tion from one class of solutions to another. This can be from the in-phase state to a mixed-phase

state, but can also occur between two in-phase configurations of different frequency. Analytical

and numerical results are presented for coupled Landau–Stuart oscillators, while numerical results

are shown for R€ossler and FitzHugh-Nagumo systems. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4897360]

Time-delay couplings are ubiquitous in natural systems

and typically arise due to the finite speed of signal propa-

gation between the interacting units. Such coupling can

cause the system to exhibit dynamics that are not

observed for instantaneous coupling, namely for zero

time-delay. In this work, we study the nature of phase

synchronization in a system of globally delay-coupled

oscillators as a function of the coupling parameters and

system size. When the time-delay is varied there can be,

depending on the system size and the coupling strength, a

discontinuous change in the phase and frequency

response of the system which can go from a synchronous

in-phase state to a mixed-phase synchronous state. There

can also be transitions between two in-phase states with

different frequencies. These transitions are observed in

the regime of sustained oscillations and also in the tran-

sient dynamics of the amplitude-death region. For the

former case, we carry out a stability analysis of the

synchronized solutions, while for the latter, the change in

phase behavior can be tracked through eigenvalue analy-

sis of the Jacobian matrix at the fixed point.

I. INTRODUCTION

Ensembles of globally coupled oscillators are abundant

in nature, and they frequently exhibit collective behavior.

Well known examples include the synchronization of flash-

ing-fireflies,1 clapping of large audiences,2 lasers arrays,3

chemical,4,5 and biological oscillators,6–9 When the speed of

information transfer in such settings is finite, then the cou-

pling between the various subunits involves time-delay. This

can significantly influence the system dynamics:10–12 a num-

ber of effects that are modified as a result of delay-coupling,

including aspects of synchronization,13–16 amplitude

death,17,18 phase-flip,19,20 multistability, and hysteresis.

In an ensemble of coupled oscillators, within the

synchronized regime, there can be different states character-

ized by the nature of the individual oscillator phases (see the

schematic in Figs. 1(a) and 1(b) for two and three oscilla-

tors). All the elements can be oscillating in-phase and in
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FIG. 1. Schematic depiction of the phase relationship of (a) two and (b)

three phase oscillators. In both (a) and (b), configurations (i) in-phase and

(ii) splay-phase are stable solutions that can be achieved for all parameter

values, while the arbitrary phase configurations [(iii) and (iv)] depend upon

coupling parameters. (c) Summary of results as a function of N and e:
Beyond a critical value Nc(e), mixed phase solutions are not stable (see the

text for details).
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perfect synchrony for instance (Figs. 1(ai) and 1(bi)). A sec-

ond state is the so-called splay-phase:21 the phases of the

oscillators are equally spaced on the circle (Figs. 1 (aii) and

1(bii)). Such states have been observed in the absence of

delay21,22 as well as in delay coupled oscillators.23–25 In

addition, one can also observe the phase-locked solutions

with arbitrary-phase differences (Figs. 1(aiii), 1(biii), and

1(biv)). The later two states are termed mixed;26 such states

have been observed in neuronal models,27 as well as experi-

mentally in coupled chemical,24 and optoelectronic

oscillators.25

The various stable phase configurations that can result

in a complex system represent distinct activity patterns

within the synchronized regime,28,29 and the study of such

states has therefore attracted considerable interest. In addi-

tion, there is the question of bifurcations and transitions

between different phase states. One transition that has been

studied in some detail is the phase-flip,19 a transition from

the purely in-phase state to an anti-phase state, accompanied

by a frequency jump.30,31 In recent work,23–25 the distinct

phase behavior of a network of oscillators arranged in a ring

has been studied in detail. Interesting questions relating to

the emergence of such states for different connection topolo-

gies and the effect of system size still need to be explored.

In this paper, we study the effect of varying system size

in an ensemble of globally coupled oscillators. For low cou-

pling strength, both in-phase or splay solutions can exist for

finite system size (see Fig. 1(c)), but for strong coupling and

larger networks, the splay-phase states disappear. Thus,

when the coupling parameters are varied, there can be a tran-

sition either from in-phase to in-phase motion, or from

splay-phase dynamics to in-phase motion. The system

remains synchronized through the transitions; with increas-

ing system size, the frequencies of the mixed-phase state are

affected while that for in-phase motion remains unchanged.

We obtain a general relation to estimate these frequencies in

an ensemble of globally delay-coupled oscillators and dis-

cuss the nature of possible transitions in the system through

stability analysis.

In Sec. II, we consider an ensemble of delay coupled

oscillators and analytically estimate the synchronized fre-

quencies and phase solutions of the system. We discuss the

effect of system size variation on the frequencies and

phases and present numerical results in Sec. III. The stabil-

ity analysis of the synchronized state as a function of net-

work size is presented in Sec. IV A; eigenvalue analysis is

presented in Sec. IV B. This makes it possible to derive

limited analytic results in the present situation. Numerical

results for coupled R€ossler and FitzHugh-Nagumo model

are presented in Sec. V, suggesting that these results may

have wide applicability in other complex dynamical sys-

tems. The paper concludes with a brief discussion and sum-

mary in Sec. VI.

II. PHASE LOCKED SOLUTIONS

The equations of motion for an ensemble of N globally

coupled Landau-Stuart oscillators with time-delayed interac-

tions are

_Zj ¼ 1þ ixj � jZjj2
� �

Zj þ
e

N � 1ð Þ
X
k 6¼j

Zk t� sð Þ � Zj tð Þ
� �

;

(1)

where Zj is the complex amplitude of the jth oscillator, xj its

intrinsic frequency, the coupling strength is e, and j, k¼ 1,

2,…, N.

Numerical studies of the phase behavior of Eq. (1) as a

function of the coupling parameter e and system size N are

summarized in Fig. 1(c). For lower coupling strengths and

smaller networks, we find an interval in the time-delay when

the system can show mixed-phase behavior. When the time

delay is varied, the system abruptly jumps from in-phase

motion to mixed-phase dynamics and then reverts to in-

phase dynamics. For higher couplings, this window

decreases with increasing network size, and disappears after

a critical system size Nc(e). It is to be noted that these transi-

tions are observed not only in oscillatory regime, but also in

the transient dynamics of amplitude death region where the

system eventually goes to a fixed point.

It is possible to obtain an analytic estimation of the

synchronized frequencies of the system in the weak coupling

limit. Making the approximation that amplitude variations of

the system can be ignored, and one can focus upon the phase

dynamics, then for identical or nearly identical oscillators,

the dynamics of the corresponding phase variables reduce to

that of the Kuramoto model,4 given as30,31

_/i ¼ xþ e

N � 1ð Þ
X
j 6¼i

sin /j t� sð Þ � /i tð Þ
� �

; (2)

where /i is the phase of ith oscillator. In the synchronized re-

gime, the oscillators move with the same common frequency

X, and the solutions can be written in terms of X and con-

stant phases ai as

/iðtÞ ¼ Xtþ ai; i ¼ 1; 2;…;N: (3)

If we consider a1¼ 0 as a reference angle, then aj, j¼ 2,

3,…, N will be the phase difference of the jth oscillator with

respect to the first one. It is straightforward to see that the

relation between collective frequency X and constant phases

ai is

X ¼ x� e

N � 1ð ÞGi; (4)

where

Gi ¼
X
j6¼i

sin ðXs� ðaj � aiÞÞ; i; j ¼ 1; 2…N: (5)

Averaging Eq. (4) over all oscillators gives

X ¼ x� e

N N � 1ð ÞG; (6)

where

G ¼
XN

i¼1

Gi ¼
XN

i¼1

X
j6¼i

sin ðXs� ðaj � aiÞÞ
 !

:
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On further simplification, this reduces to

G ¼
XN

i¼1

sinðXsÞ
X
j 6¼i

cos ðaj � aiÞ
 !

�
XN

i¼1

cosðXsÞ
X
j 6¼i

sin ðaj � aiÞ
 !

: (7)

The second term vanishes, and the first gives

G ¼ 2 sinðXsÞ
X
i;j>i

cos ðaj � aiÞ; (8)

so that Eq. (6) can be rewritten as

X ¼ x� 2e sin Xsð Þ
N N � 1ð Þ

X
i;j>i

cos aj � aið Þ
� �

: (9)

If one defines akl¼ ak � al, and the quantity

~c ¼
P

i;j>i cos aj � aið Þ
N N � 1ð Þ=2

¼ h cos aijð Þi; (10)

namely, the averaged cosine of phase differences for all os-

cillator pairs, it becomes possible to rewrite Eq. (9) for the

the synchronized collective frequency in compact form as

X ¼ x� e ~c sinðXsÞ; (11)

where j~cj � 1. This general transcendental relation gives the

frequency of synchronized motion for N globally delay-

coupled oscillators.

The condition for synchronization, from Eq. (4), is

G1 ¼ G2 ¼ � � � ¼ GN;

i:e:;
X
j6¼1

sinðXs� aj1Þ ¼
X
j 6¼2

sinðXs� aj2Þ ¼ � � �

¼
X
j 6¼N

sinðXs� ajNÞ: (12)

Solutions for a’s from Eq. (12) provide possible phase con-

figurations. This information can then be used in Eqs. (10)

and (11) to calculate the ~c and the synchronized frequencies

respectively.

It can be seen that there are two trivial ways in which

the synchronization condition Eq. (12) can be satisfied. For

the in-phase solution, all aij¼ 0 and hence ~c ¼ 1. This case

has been extensively studied.16 The other case is the splay
state with all phases equally spaced, namely

aj ¼ j� 1ð Þ 2p
N

; j ¼ 1; 2;…;N: (13)

This solution can occur for arbitrary s and X(s) and has

~c 6¼ 1. The splay configuration for two oscillators is the anti-

phase state; this is known to occur with delay coupling and

has been examined in detail in the context of the phase-flip

transition30,31

Depending upon the values of s and X(s), there may

be other mixed-phase configurations satisfying Eq. (12).

Although finding these solutions analytically by solving

Eqs. (11) and (12) is nontrivial, we encounter such phase

states in numerical simulations.

III. SYSTEM-SIZE EFFECTS

Here, we analyze the effects of coupling parameters and

size of the network on synchronized frequencies X and cor-

responding phase behaviors. It is clear that the value of ~c in

Eq. (10) will depend upon how the a’s are distributed.

Possible distributions for two and three oscillators are illus-

trated below.

(i) N¼ 2: For arbitrary ai, the synchronization condition

G1¼G2 gives the relation sin �a cos Xs ¼ 0, where

�a ¼ a1 � a2. If sin �a ¼ 0, then both in-phase and out-

of-phase (in this case, this is the splay) solutions are

possible for arbitrary values of s and X(s), as shown

in Figs. 1(ai) and 1(aii), respectively. However, if

cos Xs ¼ 0 (i.e., Xs¼p/2, 3p/2,…) then the

synchronized solutions can have an arbitrary phase

difference �a, which depends upon initial conditions

(Fig. 1(aiii)).

(ii) N¼ 3: Although finding a compact analytical condition

for synchronization by setting G1¼G2¼G3 is nontrivial,

synchronized solutions do exist for ai¼ 0 (in-phase, Fig.

1(bi)) and for minfjai � ajj; 2p� jai � ajjg ¼ 2p=3

(splay phase, Fig. 1(bii)). An arbitrary phase configura-

tion say a1¼ a2¼ a demands, from the synchronization

condition, tan Xs ¼ 3 sinða3 � aÞ=ð1� cosða3 � aÞÞ,
and clearly depends on s and X(s). Such arbitrary phase

configurations are possible only for certain values of s,

X(s); see Figs. 1(biii) and 1(biv).

We examine the behavior of synchronized frequencies

and corresponding phase configurations as a function of the

delay for arbitrary system sizes N. The variation of h~ci as a

function of N in Eq. (1) is shown in Fig. 2(a), the average h�i
being taken over 103 initial conditions. The different curves

correspond to different values of coupling strengths for fixed

time-delay s¼ p/x. ~c is calculated numerically32 from the

phases ai ¼ tan�1ðIm Zi=Re ZiÞ of the oscillators in Eq. (1).

As can be clearly seen there are two curves C1 and C2: the first

corresponding to the in-phase solution, ~c ¼ 1, while the sec-

ond is a mixed-phase solution with ~c 6¼ 1. The leading behav-

iour as a function of N appears to be ~c / �ðN � 1Þ�1
.33

The fluctuations in ~c decrease with N; shown in Figs.

2(b) and 2(c) are the distributions of ~c for N¼ 6 and 15 for

the mixed phase case. The variance decreases with increas-

ing number of oscillators, and ~c ! 0 indicating effectively

uncoupled behavior when x¼X. Similar variations in h~ci
are observed for different values of delays for fixed coupling

strengths since ~c in Eq. (10) does not explicitly depend upon

coupling parameters e or s (data not shown here).

In Fig. 3, we numerically illustrate the transitions

between different phase states when the parameters are var-

ied, and the effect of network size on these transitions. The

variation of ~c and the synchronization frequency, calculated

numerically, is shown as a function of the delay parameter s
in Figs. 3(a) and 3(b), respectively. The coupling strength is

fixed, e¼ 2, and the number of oscillators is varied. There
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are windows in delay parameter (when ~c 6¼ 1), wherein the

system has the mixed-phase configurations. These also sug-

gest that different types of phase relations can be found at

the same delay for different N, e.g., at s¼ 0.6 there are out-

of-phase, mixed-phase and in-phase solutions for N¼ 2, 6,

and 8, respectively. For a small number of oscillators, say

N¼ 2 and 6, when the delay is increased, the frequency of

in-phase motion when ~c ¼ 1 decreases and then jumps to

higher value having mixed-phase, ~c 6¼ 1. On further increase

of delay, the frequency again jumps to another higher value

with in-phase motion (namely ~c ¼ 1).

For more oscillators, say above N¼ 8 (see Figs. 3(a) and

3(b)), the intermediate mixed-phase does not appear and the

motion goes from in-phase to in-phase dynamics. This is

also evident from Fig. 2, where the solution switches from

mixed-phase (curve C2) to in-phase (C1) when the number of

oscillators is increased at fixed coupling parameters: for

example, when e¼ 2, there is switching from mixed-phase to

in-phase at N¼ 8.34

As we see in Fig. 3 that the width of the splay window,

represented by D, decreases with the increase of number of

oscillators, its variation with N is shown in Fig. 4 for differ-

ent coupling strengths e. For weak coupling (e.g., e¼ 0.25

and 1.5), the curve flattens, and hence, there is always a pos-

sibility of the mixed-phase solution even for a large number

of oscillators, but for strong coupling (say e¼ 2 or higher),

this width decreases to zero at specific N¼Nc(e), and hence,

only in-phase solutions can exist thereafter.

IV. FREQUENCY TRANSITIONS

Depending upon the parameter values and system size,

the system makes an abrupt transition from in-phase motion

(curve C1) to mixed-phase dynamics (C2) with an abrupt

change in frequency as well (Fig. 3). These transitions occur

both in the regime of oscillatory motion as well as in the

transient dynamics of the amplitude death region. In the for-

mer case, the transitions can be explained by analyzing the

stability of the synchronized solutions (Xtþ ai, i¼ 1…, N),

and in the latter, by an eigenvalue analysis around the stable

fixed point. We discuss these below.

A. Oscillatory regime: Stability of splay solutions

The Master Stability Function (MSF) approach35–37 is a

general framework to detect the stability of synchronized solu-

tions in a network of oscillators. Using this approach, one can

separate the local dynamics of individual oscillator from the net-

work topology given by the adjacency matrix. The analytical
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FIG. 3. The variation of (a) ~c and (b) common frequency for the system, Eq.

(1), as function of time-delay s for different number of oscillators N¼ 2

(solid-green line), 6 (dotted-red line) and 8 (dashed-blue line).

2 4 6 8 10
N

0

0.2

0.4

0.6

0.8

D

ε = 0.25

ε = 1.5

ε = 2

ε = 2.5

FIG. 4. The variation of width D, the window corresponding to the mixed-

phase solution, as a function of number of oscillators at different values of

coupling strengths.
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FIG. 2. (a) The variation of ~c as a function of N at s¼p/x (x¼ 5.0). The

analytical curves C1 and C2 (dashed lines) represent in-phase (~c ¼ 1) and

mixed-phase (Eq. (11)) solutions respectively. Symbols � and � correspond

to the numerically calculated values of ~c from Eq. (1). Errors bars in (a) cor-

respond to the standard deviation in ~c, calculated from 103 initial conditions.

The distributions of ~c calculated from 104 initial conditions for (b) N¼ 6

and (c) N¼ 15 at e¼ 1.5.
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expression for stable synchrony is obtained by diagonalizing the

variational equation for synchronized states. This is achieved by

either considering the case of in-phase states for all networks or

by taking splay states in special networks23,24—unidirectional

ring, for example. However, implementation of MSF approach

to find the stability of splay states is limited for some networks

such as globally coupled oscillators (as considered in this work).

Therefore, in this case, we numerically examine the dynamics of

perturbations from the synchronized states. We consider small

perturbations ni from the splay synchronized solutions, i.e.,

/iðtÞ ¼ Xtþ ai þ ni, where ai ¼ ði� 1Þ 2p
N ; i ¼ 1; 2;…;N

(cf. Eq. (13)). Plugging these solutions in Eq. (2) we get

Xþ _ni ¼ xþ e

N � 1ð Þ
X
j 6¼i

sin �Xsþ ajiþnjðt� sÞ � niðtÞ�;
�

(14)

where aji¼ aj� ai. Expansion of this equation upto the first

order gives

Xþ _ni ¼ xþ e

N � 1ð Þ
X
j 6¼i

sin �Xsþ ajið Þ

þ e

N � 1ð Þ
X
j6¼i

cos �Xsþ ajið Þ nj t� sð Þ � ni tð Þ
� 	

:

(15)

Splay configurations, /iðtÞ ¼ Xtþ ai, are the solutions of

Eq. (2), therefore the variational equation can be written as

_ni ¼
e

N � 1ð Þ
X
j 6¼i

cos �Xsþ ajið Þ nj t� sð Þ � ni tð Þ
� 	

: (16)

These perturbations must die out for stable synchronized

states. Since the coefficients of the variables ni are not con-

stant,38 it is nontrivial to obtain a stability criterion by solv-

ing these equations analytically. However, to detect the

behavior of the perturbations, we numerically32 calculate the

Lyapunov exponents of the system Eq. (16) (not shown

here). Note that one of the Lyapunov exponent of the system

Eq. (16) is always zero corresponding to the perturbations on

the synchronization manifold. A positive largest Lyapunov

exponent indicates the instability of splay-phase synchroni-

zation states. In case the largest Lyapunov exponent is zero,

the second largest exponent determines the nature of dynam-

ics: its zero and negative values correspond to the neutrally

stable and stable splay synchronization states respectively.

Shown in Fig. 5 are the stability regions for splay states

in (X � s) plane for different values of N at e¼ 2. This figure

shows that the stable splay states (blue regions) only exist

for N¼ 2 and 3. However, for N> 3, the splay states are at

best neutrally stable (green regions), which too disappear as

the number of oscillators in the network (cf. N¼ 4, 8 in Figs.

5(c) and 5(d)) are increased.

The stability criterion for in-phase solutions is independent

of number of oscillators and given by e cosðXsÞ > 016 as can

be seen from Eq. (16) with all aji¼ 0. This suggests that when

the size of the network N increases, the system can only exhibit

in-phase behavior since the stable regions for splay states either

become neutrally stable, or even unstable, while the stability of

in-phase solutions remain unaffected. This stability analysis

confirms the absence of splay states in sufficiently large sys-

tems for high coupling strengths, as shown in Fig. 1(c).

B. Amplitude death region: Eigenvalue crossings

In this subsection, we analyze the frequency transitions

within the amplitude death region. An analytical study of the

transient dynamics is possible since the system asymptoti-

cally approaches a fixed point, in this case the origin. The

frequency of the damped motion is given by the imaginary

part of the leading eigenvalue of the Jacobian at the fixed

point, while the real part of the eigenvalue is simply the larg-

est Lyapunov exponent.

The frequency transitions occur at parameter values

where the real parts of the eigenvalues cross each other.30,31

Assuming an exponential time-dependence of perturbations,

namely dyðtÞ / expðktÞ, the Jacobian (at the origin) for N
coupled identical Landau–Stuart oscillators is (with

l¼ 1þ ix� e and c¼ ee�ks/(N� 1))

J ¼

l c … c

c l … ..
.

..

. ..
. ..

. ..
.

..

.
… l c

c … … l

0
BBBBBB@

1
CCCCCCA
: (17)

This is a symmetric matrix with eigenvalues

k1

k2

k3

..

.

kN

0
BBBBB@

1
CCCCCA ¼

lþ ðN � 1Þc
ðl� cÞ
ðl� cÞ

..

.

ðl� cÞ

0
BBBBB@

1
CCCCCA; (18)

namely,

0 2 4 6
τ

4

6

Ω

0 2 4 6
τ

4

6

Ω

0 2 4 6
τ

4

6

Ω

0 2 4 6
τ

4

6

Ω

a)  N = 2 b)  N = 3

c)  N = 4 d)  N = 8

FIG. 5. The stability diagram for the splay states for (a) N¼ 2, (b) N¼ 3, (c)

N¼ 4, and N¼ 8 oscillators in (X�s) plane. Shaded blue (or green) and blank

(white) regions correspond to the stable (or neutrally stable) and unstable

splay states, respectively. The stability is determined by calculating Lyapunov

exponents of Eq. (16) numerically. Shaded regions in (a) and (b) correspond

to the stable, while in (c) and (d), represent neutrally stable splay states.
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k1 ¼ 1þ ix� eþ e expð�k1sÞ (19)

and

kj ¼ 1þ ix� e� e

N � 1ð Þ exp �kjs
� �

; j ¼ 2; 3;…;N:

(20)

Taking ki¼ aiþ ibi, and separating real and imaginary parts,

from Eq. (19), one gets

a1 ¼ 1� eþ e expð�a1sÞ cosðb1sÞ;
b1 ¼ x� e expð�a1sÞ sinðb1sÞ;

(21)

which have no N dependence. The other eigenvalues,

kj¼ ajþ ibj given by Eq. (20), however, depend upon N;

their real and imaginary parts are

aj ¼ 1� e� e

N � 1ð Þ exp �ajsð Þcos bjsð Þ;

bj ¼ xþ e

N � 1ð Þ exp �ajsð Þsin bjsð Þ:
(22)

For N> 2, it is only possible to solve Eqs. (21) and (22)

numerically.

Shown in Fig. 6 are the variations of a1, aj (top row) and

b1, bj (bottom row) for N¼ 4 (left panel) and 8 (right panel) as

a function of time-delay, the solid and dashed lines corre-

sponding to solutions of Eqs. (21) and (22) respectively. There

can be multiple solutions to Eqs. (21) and (22), and these are

identified by superscripts, a
ðkÞ
i and b

ðkÞ
i . Computed values of

the largest Lyapunov exponent32 Kmax (circles) and frequen-

cies X (triangles) of the system (Eq. (1)) are also shown.

Solutions to Eq. (21) corresponding to in-phase motion

are unaffected by the system size, unlike the roots of Eq.

(22) which correspond to mixed-phases. In Fig. 6(a) the real

part of the eigenvalue a
ð1Þ
j crosses the leading eigenvalue a

ð1Þ
1

at the point T1. Since the frequency of the system is given by

the imaginary part of the leading eigenvalue, the system

jumps into the corresponding frequency b
ð1Þ
j at this crossing

as shown in Fig. 6(b). With further increase in delay, we see

another such crossing at T2 between a
ð1Þ
j and a

ð2Þ
1 , leading to

an another frequency jump into an in-phase frequency b
ð2Þ
1 .

Unlike a1 and b1, the variation of aj and bj with delay

changes with system size. We see the consequence of the N-

dependence of eigenvalues in Fig. 6(c), where for N¼ 8, a
ð1Þ
j

now does not cross the largest eigenvalue. Instead, here, two

roots of N-independent eigenvalues a
ð1Þ
1 and a

ð2Þ
1 cross at T.

Therefore, in this case, we observe the corresponding jump

from one in-phase b
ð1Þ
1 to another in-phase frequency b

ð2Þ
1 (cf.

Fig. 6(d)).

The above analysis in the amplitude death region shows

that whenever there is a crossing between the leading eigen-

value and another, there must be a dynamical transition with

a frequency discontinuity. These can either be from in-phase

to mixed-phase or even between two in-phase frequencies,

depending on the specific eigenvalues involved in the cross-

ings. When a
ðkÞ
1 crosses a

ðkÞ
j , the transition occurs between

in-phase and mixed-phase states, but when the crossing is

between two different roots of a1, then the transition is from

in-phase to in-phase motion.

V. OTHER MODEL SYSTEMS

Under certain conditions, the phase dynamics of several

systems can be approximated by the Kuramoto model.4 One

may therefore anticipate that the results obtained above will

apply to a wider class of model oscillators. Here, we present

a numerical study of coupled R€ossler oscillators as well as

coupled FitzHugh-Nagumo (FHN) neuronal model systems.

First consider globally coupled R€ossler oscillators for

which the equations of motion are given by (time-delay is

included in the coupling)

_xi ¼ �xiyi � zi þ
e

N � 1ð Þ
X
j6¼i

xj t� sð Þ � xi tð Þ
� �

;

_yi ¼ xixi þ ay;

_zi ¼ f þ z x� cð Þ:

(23)
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FIG. 6. The variation of real part a’s of

the eigenvalues for system size N¼ 4

and N¼ 8 is plotted with time-delay s in

(a) and (c), respectively. Corresponding

imaginary parts b’s are plotted in (b) and

(d). The variation of largest Lyapunov

exponent Kmax and numerically calcu-

lated frequencies X of the system (Eq.

(1)) with time-delay is plotted by blue

circles and triangles, respectively. The

system parameters are x¼ 5, e¼ 2.
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For simulations, we fixed the parameters a¼ 0.2, f¼ 0.2,

c¼ 10, and the natural frequencies are all set to xi¼ 5. The

effect of system size on synchronized frequencies at different

coupling strengths are shown in Figs. 7(a) and 7(b), where

we plot the variation of the synchronized frequency for the

R€ossler system as a function of delay s for system sizes

N¼ 2 (green circles) and N¼ 10 (blue triangles), and differ-

ent coupling, e¼ 0.1 in (a) and e¼ 0.4 in (b). Comparing

with similar results for the Landau-Stuart system in Fig. 3(b)

show that in both cases, the in-phase frequencies of the sys-

tem remain unaltered whereas mixed-phase frequencies are

modified as a function of the system size N. Similarly, the

mixed-phase frequencies disappear (Fig. 7(b)) in the R€ossler

system at higher coupling strengths as well.

Quantitatively similar results are obtained for delay

coupled FitzHugh-Nagumo neuronal model systems, shown

in Figs. 7(c) and 7(d). The equations of this model system

are given by

e _ui ¼ u� 1

3
u3

i � vi þ
K

N � 1ð Þ
X
j 6¼i

uj t� sð Þ � ui tð Þ
� �

;

_vi ¼ ui þ a:

(24)

We set the parameter values a¼ e¼ 0.5 and numerically ana-

lyze the frequency response of the system at different cou-

pling strengths K¼ 0.2 (Fig. 7(c)) and K¼ 0.5 (Fig. 7(d)).

Here, again the phase behavior of the system corresponding

to in- and mixed-phase frequencies is very similar to the

R€ossler or the Landau–Stuart system: mixed-phase dynamics

disappears for higher coupling strengths and larger system

size as can be seen in Fig. 7(d).

VI. SUMMARY AND DISCUSSION

In this work, we have considered the dynamics of a net-

work of oscillators coupled globally and with time-delay.

The system adopts distinct synchronized solutions: All the

oscillators can be in-phase or the phases can be mixed. In

this latter instance, the phases can be uniformly distributed

on the circle, namely, the splay phase, or the phases can be

arbitrary. For both situations, our numerical results are sup-

ported by analysis. Some solutions do not depend upon the

delay parameter, while others occur only for certain values

of the delay. We find that regardless of the size of the net-

work, the frequency of oscillation can be calculated in a

mean-field approximation, Eq. (11).

For appropriate values of coupling strength, small net-

works of oscillators show transitions between the in phase

and mixed states when the time-delay is varied. However,

for larger networks, we observe that the mixed phase van-

ishes, however leaving a vestige of the transition in a fre-

quency jump that accompanies a transition between two in-

phase solutions. This result generalizes the phase-flip transi-

tion which has been extensively studied for two oscilla-

tors.19,20,30,31 The critical value of number of oscillators for

which the mixed phase disappears depends exponentially on

the coupling strength. Stability analysis for splay states con-

firms this observation.

Our results appear to hold for any system where the

phase is properly defined: we numerically demonstrate this

for globally coupled R€ossler and Fitzhugh-Nagumo neuronal

model. Furthermore, when the oscillators are mismatched,39

there is a similar variation in ~c with N (cf. Fig. 3).

Thus, the present results make it possible to determine

the phase dynamics for a specified number of oscillators and

for a given coupling strength and also to estimate the

synchronized frequency, Eq. (11) for a large number of oscil-

lators, mainly for the mixed-phase solutions. In this case,

~c ! 0 as N !1, and the synchronized frequency for large

N is approximately equal to the intrinsic frequencies from

Eq. (11) and the oscillators are effectively uncoupled.

Finally, it can also be surmised that the complexity, namely,

the number of different phase configurations in the system,

reduces as the size of the system grows.
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