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We study dynamical systems on a hypernetwork, namely by coupling them through several variables. For the
case when the coupling(s) are all linear, a comprehensive analysis of the master stability function (MSF) for
synchronized dynamics is presented and, through application to a number of paradigmatic examples, the typical
forms of the MSF are discussed. The MSF formalism for hypernetworks also provides a framework to study
synchronization in systems that are diffusively coupled through dissimilar variables—the so-called conjugate
coupling that can lead to amplitude or oscillation death.
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I. INTRODUCTION

The dynamics of specific isolated systems, and the manner
in which these are modified when coupled to other similar or
dissimilar systems, have been systematically studied [1–4] in
numerous settings. The unexpected dynamical states that can
result when nonlinear dynamical systems are coupled have
been widely explored in a variety of contexts that include
physical, chemical, biological, ecological, and even social
systems [4–9].

The nature of the coupling between systems is significant.
When the coupling is linear and weak, some of the behavior of
the coupled system can be deduced from the uncoupled case
through a perturbative analysis. Other cases are less amenable
to analysis, but these also occur quite naturally, as for instance
nonlinear coupling [10] or coupling via dissimilar variables,
namely conjugate coupling [2,3,11,12].

Our interest here is in multiply coupled dynamical systems,
namely the case of hypernetworks [13]. This situation is
frequently encountered in experimental situations that involve
spatially extended dynamical systems [14] and the case of
linear coupling through a single variable is often an inadequate
approximation [15]. This is therefore a natural setting within
which to treat coupled systems, and, as we discuss below, the
case of coupling via dissimilar variables [2] can also be viewed
as a hypernetwork [13].

We consider the simplest cases, when the couplings are
all taken to be linear in the variables. Two effects that
we study are the occurrence of amplitude death (AD) [16–
19] and synchronization [4] in hypernetworks. There is a
well-developed formalism that applies in the analysis of the
many forms of synchronization that are observed in nonlinear
dynamical systems [4,20,21]. Synchronized dynamics occurs
in a subspace of the overall phase space, the synchronization
manifold [22], and the principal condition for the occurrence of
such dynamics relates to the stability of this manifold. This can
be studied via the master stability function (MSF) [21,23–25].

The MSF provides a complete classification and a detailed
understanding of the stability conditions for various forms of
synchrony in simple networks [26]. We extend this analysis
and study the MSF formalism for hypernetworks to determine
whether these can also be classified into distinct sets. A
combination of numerical as well as analytical methods is
used to analyze well-studied flows such as the chaotic Rössler,

Lorenz, and driven van der Pol and Duffing oscillators, as well
as excitable systems such as the Hindmarsh-Rose neuronal
model.

The phenomenon of synchronization in systems coupled
through dissimilar variables is well described within the
hypernetwork MSF formalism, subsequently providing a
general understanding of conjugate diffusive coupling. The
MSFs observed here typically fall into three basic classes. In
the first class, there is no regime of synchronization. The other
two types correspond to bounded or unbounded regions of
synchronization.

The overall organization of this paper is as follows. We
start in Sec. II by introducing the notation and the notion of
hypernetworks, and briefly review the MSF formalism that
applies. In Sec. III numerical results are presented for the
MSF using the model flows mentioned above, and a case for
classifying the MSFs into distinct types is made. The paper
concludes with a discussion and summary in Sec. IV.

II. HYPERNETWORK COUPLING

Consider a dynamical system in n dimensions,

ẋ = F(x,μμμ), (1)

where x ≡ {x1,x2, . . . ,xn} and μμμ denotes the parameters that
govern the flow. When two or more such systems are coupled
linearly with each other via more than one variable, very
generally we can write the set of coupled equations as

ẋi = F(xi ,μμμi) +
∑

k

εk

N∑
j

Gk
ij Hk(xj ). (2)

The superscript i that takes the value from 1, . . . ,N refers
to the individual systems. Gk and Hk are matrices that specify
the coupling of the underlying hypernetwork, and their matrix
elements are denoted Gk

ij and Hk
ij , respectively. The coupling

strength corresponding to each of the coupled variables is εk ,
and in this paper we consider only two distinct variables for
coupling; therefore, k takes values 1,2. Denoting by X the
complete set of nN variables (n being the dimension of the
systems at each node and N being the total number of nodes
in the underlying network) the above equations of motion can
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be written compactly as

Ẋ = I ⊗ F(x,μμμ) + ε1G1 ⊗ H1 + ε2G2 ⊗ H2, (3)

where I is the N × N identity matrix, while the matrices Gk

are N × N since there are N nodes in the underlying network
and the matrices Hk , k = 1,2, are n × n since each individual
node corresponds to an n-dimensional flow. In all the examples
we study here, the matrices Gk commute and their row sums
are constants,

∑
j Gk

ij = δk , k = 1,2. When the systems on the
individual nodes are synchronized, then the synchronization
state (x1 = x2 = · · · = xN ≡ xS) dynamics is given by

ẋS = F(xS,μμμ) + ε1δ1H1(xS) + ε2δ2H2(xS). (4)

It is useful to consider, as a specific example, identical coupled
Rössler oscillators, each of which is specified by the evolution
equations (A1) with the two systems coupled bidirectionally
in two variables on the hypernetwork,

ẋi
1 = −axi

2 − xi
3 + ε1

(
(1 − ν)xj

1 − xi
1

)
+ ε2

(
x

j

2 − (1 − ν)xi
2

)
, (5)

ẋi
2 = axi

1 + bxi
2, ẋi

3 = c + xi
3

(
xi

1 − d
)
.

The additional parameter ν can be used to further tune the
nature of the coupling. With reference to Eq. (3), the matrices
specifying the coupling in Eq. (5) are

G1(ν) =
( −1 1 − ν

1 − ν −1

)
, H1 =

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ ,

G2(ν) =
(−(1 − ν) 1

1 −(1 − ν)

)
, H2 =

⎛
⎝0 1 0

0 0 0
0 0 0

⎞
⎠ .

(6)

Following the convention [21,26] used in writing the
matrices in Eq. (6) from Eq. (5), the nonzero elements in the
matrices Hk are indicated by the notation i → j to signify that
the ith component of one node is coupled to the j th component
of another. On the hypernetwork, there can be multiple
connections in either direction. There is some arbitrariness
in which of the coupling terms is assigned to H1 and H2, and
we choose an internally consistent convention [27].

The stability of the synchronization manifold Eq. (4) is
governed by the variational equation associated with Eq. (3).
We obtain the variational equation for systems with identical
and nonidentical parameters, respectively, below.

A. Identical parameters

By considering variations evaluated on the synchronization
manifold it is straightforward to obtain from Eq. (3),

ξ̇ξξ = I ⊗ DF(xS,μμμ)ξξξ + ε1G1 ⊗ DH1(xS)ξξξ

+ ε2G2 ⊗ DH2(xS)ξξξ, (7)

where ξξξ = {ξξξ 1, . . . ,ξξξN } is a nN -dimensional vector, ξξξ i are n-
dimensional vectors, and xS is obtained by integrating Eq. (4).
The matrix I ⊗ DF(xS,μμμ) is block diagonal. If the matrices
Gk are simultaneously diagonalizable by the same orthogonal
transformation P, i.e., Gk = P−1���kP for both k = 1,2, then

Eq. (7) reduces to a block diagonal form. The dynamics of
the qth block, where q takes integer values from 1, . . . ,N , is
given by

ξ̇ξξ q = DF(xS,μμμ)ξξξq + g1
qDH1(x)ξξξq + g2

qDH2(x)ξξξq, (8)

whereξξξq are n-dimensional vectors, and gk
q are the eigenvalues

of Gk , which may be complex in general. Since the equation
for each block is identical, Eq. (8) can be written as

ζ̇ζζ = DF(xS,μμμ)ζζζ + (α1 + iβ1)DH1(xS)ζζζ

+ (α2 + iβ2)DH2(xS)ζζζ , (9)

where ζζζ is an n-dimensional vector, and αk and βk are the
real and imaginary parts of the rescaled eigenvalues of Gk .
As has been discussed earlier [21,26], by varying these one
can recover the dynamics for each of the q modes of the
variational equations (8). If the Lyapunov exponent transverse
to the synchronization manifold λs , namely the master stability
function [21], is less than zero, the synchronization is stable.
For the symmetric matrices Gk in Eq. (3) the imaginary part
of the eigenvalues βk = 0, k = 1,2.

B. Parameter and coupling strength mismatch

In case of parameter mismatch the variational equation
becomes, following [28–30],

ζ̇ζζ = DF(x̄,μ̄μμ)ζζζ + α1DH1ζζζ + α2DH2ζζζ

+ψ1DμμμF(x̄,μ̄μμ) + ψ2DμμμDF(x̄,μ̄μμ)ζζζ . (10)

Here bar over a variable or parameter implies population
average. When the perturbations due to {ψk} are small the
average x̄ can be replaced with the synchronization manifold
xS as obtained from integrating Eq. (4) at the average value
of parameters μ̄μμ. Here ψ1 and ψ2 represent the strength of
first- and second-order terms in the Taylor expansion [28–30]
that are linear in parameter mismatch. For mismatch in the
parameter a for the Rössler flow Eq. (A1), we have DμμμF =
[−x2,x1,1]T and DμμμDF = [[0,−1,0],[1,0,1],[0,0,0]].

The unequal coupling strengths can be achieved in two
ways within the MSF formalism. Choose (a) matrices G1 and
G2 such that the absolute value of row sums are related to each
other by a scale factor, or (b) different values of ε1 and ε2. In
both these cases the rescaled eigenvalues α1 and α2 will be
related by a factor α1 = κα2, but the synchronized solutions
may or may not be those of the uncoupled case as determined
by Eq. (4) with δk = 0, k = 1,2.

C. Synchronization and amplitude death: Rössler flow

For coupled Rössler flows as in Eq. (5), when ε1 = ε2

and ν = 1, the conjugate diffusive coupling [3] is recovered.
This limit is known to produce the phenomenon of amplitude
death [2]. Further the transition to synchronization in that limit
is accompanied by chaos suppression [3,31]. Furthermore, the
synchronized dynamics is not present in the uncoupled system.

Chaos suppression here corresponds to a transition from
chaotic dynamics (λ1 > 0) to a periodic orbit (λ1 = 0) [3,31].
For the hypernetwork coupling above, note that ν = 1 gives
|δk| = ν = 1 (the row sum of Gk in Eq. (6)), and thus the
synchronized dynamics given by Eq. (4) does not reduce
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FIG. 1. Largest Lyapunov exponent, λ1, and the transverse
Lyapunov exponent λT for a hypernetwork of two nodes, each with a
Rössler oscillator, as a function of the coupling strength ε1 (ε2 = ε1).
In (a) and (c) the parameter ν = 1, while for (b) and (d), ν = 0.0012.
The point of synchronization is easily checked by computing the
eigenvalues of the matrices Gk in Eq. (6).

to the uncoupled flow. Clearly then for all 0 < ν < 1 the
synchronized dynamics is actually not present in the uncoupled
flow, but in such cases we find that amplitude death is still
observed. Conjugate diffusive coupling [3] is thus a special
case in the hypernetwork.

When ν = 0 the row sums of each of the connectivity
matrices δ1,2 is zero and hence the dynamics on the syn-
chronization manifold is governed by the uncoupled equation.
We find that amplitude death can be observed for a general
conjugate diffusive coupling as in Eq. (5) even for ν ∼ 0
as shown in Fig. 1. However, this is absent for ν = 0. It
was noted in [3] that transition to synchronization coincides
with chaos suppression, but a change in the parameter ν

away from unity and towards zero shows that synchronization
precedes chaos suppression (Fig. 1). It is already known that
parameter mismatch in coupled dynamical systems can lead
to amplitude death [32–34]. Shown in Fig. 2 is the largest
Lyapunov exponent of the system in Eq. (2) and it is clear that
amplitude death persists for the case of nonidentical coupling
strengths, i.e., for ratio of coupling strengths different from
unity, on the hypernetwork.

While the results presented are for Rössler oscillators, we
have obtained similar results for two coupled Lorenz systems.
In the following sections we will classify the MSFs as obtained
from Eq. (9) using different flows and test their robustness
under perturbations as in Eq. (10).

III. MSF FOR TYPICAL NONLINEAR FLOWS

The behavior of the MSF for hypernetworks can be
classified into categories following Lai et al. [26]. When there
is a single coupling matrix the MSF can be characterized by the
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FIG. 2. Largest Lyapunov exponent for two coupled Rössler
flows with the matrices Gk , Hk given in Eq. (6), with ν = 0.5. In (a)
the eigenvalues of the two connection matrices are the same and in
(b) the coupling strengths are ε2 = 0.1ε1 (namely the eigenvalues are
rescaled as α2 = 0.1α1; see the text for explanation). The transition
points to amplitude death and chaos suppression are marked AD and
CS, respectively.

number of times it crosses the zero axis [26] as a function of
rescaled eigenvalue. Such an MSF is said to belong to the class
�k

m,k = 1,2, where m is the number of zero axis crossings.
Shown in Figs. 3 and 4 are the MSFs for the flows listed

in the Appendix under the coupling schemes indicated in the
figures. Broadly speaking, three classes of MSF are observed.

(i) No region of negative MSF, i.e., no synchronization
possible.

(ii) Unbounded regions of negative MSF in the α1-α2 plane.
(iii) Bounded region(s) of negative (positive) MSF sur-

rounded by positive (negative) MSF.
These categories arise out of the following generic behavior.

If the MSF crosses the zero axis once when one of the
parameters αk is varied while the other αl = 0, where [k,l] =
1,2 but k �= l, then a small nonzero value of αl has one of
the following effects: increasing or decreasing the interval of
negative MSF in αk . This change in the interval of negative
MSF may or may not be monotonic. A combination of these
possibilities helps create bounded or unbounded regions of
stability as evident in Figs. 3 and 4. In Figs. 3 through 6, the
contours of the MSF are plotted in the α1-α2 plane, with the
contour in black representing the zero value of the MSF and
other contours corresponding to the numerical values given
in the respective figure captions. Note that the αk are the real
parts of the eigenvalues of the matrices Hk [27].

Thus the MSF in a hypernetwork can be classified into
three categories: systems where there is no synchronization,
when there are unbounded regions of synchronization, and
when there are closed or bounded regions in parameter space,
of stable and unstable synchronized dynamics. These typical
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FIG. 3. (Color online) Contours of constant MSF (λs) with cou-
pling schemes as indicated by the pair of arrows, on a hypernetwork.
Figures (a) and (b) are for coupled Rössler flows, and the contours
correspond to λs = 0.2,0.0, − 0.2. Figures (c) and (d) are for
Hindmarsh-Rose neuronal systems. In (c) the contours correspond
to λs = −0.08,0.0,0.1, while in (d) the contours correspond to
λs = −0.1,0.0,0.2. The color code for the contours is positive (red),
negative (orange), and zero (yellow).

forms of the MSF were observed when the row sums δk of
connectivity matrices Gk are zero. However, the basic forms
of these MSFs are preserved when δk ∼ 0. This facilitates
location of regions of synchronization (and/or amplitude
death) in the α1-α2 plane. In general, synchronization or
amplitude death in hypernetworks can be observed in the α1-α2

plane on a family of curves within the synchronization region
as indicated by the MSF.

It is interesting to note that the shape of contours in the
α1-α2 plane can be predicted from the contours of the sum
of MSF’s corresponding to a single network. Say the MSF
for the coupling scheme i → j as a function of α, where α

is the scaled eigenvalue when only one connection matrix is
taken, is given by �s = ηij (α). The sum of two such �s with
i = 1 (meaning the coupling term is introduced in the equation
for the first variable) and j = 2,3 can be Taylor expanded in
powers of α1 and α2 about (0,0) as follows:

�s(α
1) + �s(α

2) = η12(α1) + η13(α2)

= η12(0) + η13(0) + α1∂α1η12 + α2∂α2η13

+ 1

2!

(
(α1)2∂2

α1η12 + (α2)2∂2
α2η13

)
. (11)

For a constant value of LHS Eq. (11) defines a curve in the
α1-α2 plane. Now consider the master stability function of a
hypernetwork �s(α1,α2). Carrying out the Taylor expansion
would give

�s(α
1,α2) = η23(α1,α2)

= η23(0,0) + α1∂α1η23 + α2∂α2η23

FIG. 4. (Color online) Contours of constant MSF (λs), obtained
from Eq. (10), with coupling schemes as indicated by the pair of
arrows. Figures (a) and (b) correspond to coupled Lorenz flows. In
(a) the contours correspond to (green) λs = 1.0, (khaki) λs = 2.0,
and (brown) λs = 3.0, while in (b) the contours correspond to λs =
−0.2,0.0,0.2. Figure (c) is for coupled driven Duffing oscillators
with the contours corresponding to λs = −0.022,0,0.022,1, and (d)
the driven van der Pol systems with the contours corresponding to
λs = −0.022,0,0.022,1. The color codes in (b)–(d) are positive (red),
negative (orange), and zero (yellow) contours.

+ 1

2!

(
(α1)2∂2

α1η23 + (α2)2∂2
α2η23

)

+α2α1∂α1∂α2η23, (12)

where we have dropped the index referring to the subequation
in which coupling terms are present, i.e., i = 1 in this specific
instance.

Depending on the sign of the coefficients of powers of α1

and α2 near the transition to a particular value in �s(α1,α2) and
�s(α1,α2), topologically identical contours in the α1-α2 plane
are formed by the two functions. However, since the function
�s(α1,α2) may have terms of interaction type (α1)p1 (α2)p2 ,
where p1,p2 are integer powers, the topological form of
the contours in the functions in Eq. (11) and Eq. (12) may
differ. This gives necessary (but not sufficient) conditions for
identical contour types observed in the hypernetwork MSF:
compare Figs. 3 and 4 with Fig. 5. The sum of MSF’s test,
as argued above, is computationally simple to perform. To
test the robustness of MSF forms under parameter mismatch,
we numerically calculate λs from Eq. (10) for various values
of ψ1 and ψ2. We observe that if the parameter variation is
sufficiently small as embodied in ψ1 or ψ2, the shapes of
MSF are robust. The perturbative condition varies depending
on the choice of parameter(s) that have the mismatch, and
representative cases for the Rössler and Lorenz flows are
shown in Fig. 6. Note that the basic character of the MSF
is robust when the row sum for the G1,2 matrices is small.
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FIG. 5. Contours of the sum of the MSF for single networks in
the α1-α2 plane for the (a),(b) Rössler, (c) Hindmarsh-Rose neuron,
and (d) Lorenz flows with the coupling scheme indicated (compare
with Figs. 3 and 4). Shown are contours of zero sum. Two arrows in
each subfigure indicate that MSF’s with these coupling schemes have
been added to obtain the contour(s).

IV. SUMMARY

In this work, we have investigated the master stability
function of a hypernetwork numerically and showed that
it can be classified into open and closed stable regions of
synchronization. The MSF’s are robust under small variation
of parameters. The topology of hypernetwork MSF’s can
be predicted using MSF sums of the single network, as a
necessary but not sufficient condition. The robustness of the
basic nature of these MSF curves follows from the conjecture
that convergence to synchronization states depend smoothly
on parameter mismatch [28,29].

We also showed that synchronization with the conjugate
diffusive coupling introduced in [2,3] can be fully understood
in terms of MSF of a hypernetwork when the sum δk of each of
the connection matrices [Gk in Eq. (6)] is a nonzero constant.
For sufficiently small δk one can obtain the phenomenon of
amplitude death, thus providing a basis for the observation of
amplitude death in conjugate coupled systems with identical
parameters to be understood in terms of possible states of a
hypernetwork.

The occurrence of bounded and unbounded regions of
synchronized dynamics is found here when the coupling
is of diffusive type. In experimental and model situations
when the coupling is linear, the present study will be useful
in predicting synchronization regimes. However, there are
examples of systems where the coupling is nonlinear [35],
and in these cases our approach may provide the first step in
a perturbative analysis. As is well known, the MSF formalism
is not applicable for coupling schemes dominated by higher-
order terms, and such hypernetworked systems will need to be
investigated separately.

FIG. 6. (Color online) Contours of constant MSF (λs) positive
(red), negative (orange), and zero (yellow) in the α1-α2 plane
for coupled Lorenz flows with (a),(b) ψ2 = 0.1,1.0 and Rössler
oscillators in (c),(d) with ψ2 = 0.05,0.1. Compare with Figs. 3 and 4.
The coupling scheme of the hypernetwork is indicated by the pair of
arrows in each subfigure. [Note that in Fig. 4(b) the value of ψ2 is
zero; hence the similarity to Fig. (a) above.]
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APPENDIX: MODEL SYSTEMS

In this paper we have studied hypernetwork coupling in the
following dynamical systems.

(i) Rössler flow [36]:

ẋi
1 = −axi

2 − xi
3,

ẋi
2 = axi

1 + bxi
2, (A1)

ẋi
3 = c + xi

3

(
xi

1 − d
)
,

with a = 0.97, b = 0.165, c = 0.2, and d = 10.
(ii) Lorenz flow [37]:

ẋ1 = σ (x2 − x1),

ẋ2 = x1(r − x3) − x2, (A2)

ẋ3 = x1x2 − bx3,

with σ = 10, r = 28, and b = 8/3.
(iii) Hindmarsh-Rose neuron [38]:

ẋ1 = x2 + 3x2
1 − x3

1 − x3 + I,

ẋ2 = 1 − 5x2
1 − x2, (A3)

ẋ3 = −rx3 + rs(x1 + 1.6),

with I = 3.2, r = 0.006, and s = 4.
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(iv) Driven Duffing oscillator [39]:

ẋ1 = x2,

ẋ2 = −hx2 − x3
1 + q sin(ηx3), (A4)

ẋ3 = 1,

with η = 1, h = 0.1, and q = 5.6.

(v) Driven van der Pol oscillator [26]:

ẋ1 = x2,

ẋ2 = −x1 + d
(
1 − x2

1

)
x2 + f sin(ηx3), (A5)

ẋ3 = 1,

with η = 4.065, d = 3, and f = 15.
In all cases, the motion is chaotic for the specified set of

parameters [26].
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[14] Sz. Boda, Z. Néda, B. Tyukodi, and A. Tunyagi, Eur. Phys. J. B

86, 263 (2013).
[15] Y-C. Lai, E. M. Bolt, and Z. Liu, Chaos Solitons Fractals 15,

219 (2003).
[16] G. Saxena, A. Prasad, and R. Ramaswamy, Phys. Rep. 521, 205

(2012).
[17] G. Saxena, N. Punetha, A. Prasad, and R. Ramaswamy, AIP

Conf. Proc. 1582, 158 (2014).
[18] V. Pal, A. Prasad, and R. Ghosh, J. Phys. B 44, 235403

(2011).
[19] V. Resmi, G. Ambika, and R. E. Amritkar, Phys. Rev. E 84,

046212 (2011).

[20] L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[21] L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 80, 2109 (1998).
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