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Quasiperiodically driven maps in the low-dissipation limit
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We study the quasiperiodically driven Hénon and Standard maps in the weak dissipative limit. In the absence of
forcing, there are a large number of coexisting periodic attractors. Although chaotic attractors can also be found,
these typically have vanishingly small basins of attraction. Quasiperiodic forcing reduces the multistability in the
system, and as the bifurcation parameter is varied, strange nonchaotic attractors (SNAs) are created. The attractor
basin for SNAs appears to be the largest among those of all coexisting attractors at such a transition.
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I. INTRODUCTION

Both the nature of the dynamics as well as the bifurcations
in simple dynamical systems are significantly modified in the
presence of external forcing [1–3]. Depending on whether
the unforced system is conservative or dissipative, different
behaviors can result [4–6], and these issues have been studied
extensively over the years with particular focus on the different
dynamical attractors that can be formed, the various transi-
tions that take place, and their potential applications [3,4].
Additionally, different types of forcing—most notably random
and quasiperiodic modulation—have been studied extensively.
Noise has been shown to be effective in controlling the
dynamics in multistable systems [1,2,7,8] or in enabling escape
[9]. Quasiperiodic forcing of dissipative systems also results in
stabilization, but through the creation of strange nonchaotic at-
tractors (SNAs), namely dynamics with no positive Lyapunov
exponents and with an underlying fractal geometry [4].

How do the attractors in forced and damped systems evolve
as the damping is turned off? The conservative limits of
many dynamical systems have been studied in detail [6,10,11];
when this limit is Hamiltonian, the dynamics is either on
n-dimensional tori in the phase space, or in the chaotic web
[12]. Externally forced weakly dissipative systems have been
studied earlier [4] for the case of noisy forcing [1,2,7]. A
parallel investigation of the dynamics with quasiperiodic mod-
ulations thus seems appropriate. Furthermore, the Hénon map
with high dissipation has also been studied with quasiperiodic
forcing [13].

In the absence of forcing, it is known that for large
dissipation, typically a single attractor is observed for a
given value of the nonlinearity parameter. As the conservative
limit is approached, however, multistability is abundant: most
of the attractors are periodic orbits, and chaotic attractors
are relatively rare [14]. Further, these also tend to have
exponentially small basins of attraction and are difficult to
detect. With quasiperiodic forcing we find that multistability
persists depending on forcing strength, but the SNAs have a
large basin of attraction.

This paper is organized as follows. In the following section,
we recall the properties of the weakly dissipative regime that
are germane to the present study. In Sec. III we consider
the dynamics of the Hénon and Standard mappings with a
quasiperiodic drive. This is followed in Sec. IV by a discussion
and summary of our results.

II. THE WEAK DISSIPATION LIMIT

For nearly conservative dynamical systems, we confine
our attention here to the following situation. Consider a
conservative system for which the motion is on quasiperiodic
tori, or is chaotic [12]. If a sufficiently small dissipative term
is added to the dynamical equations, the resulting dissipative
system possesses invariant sets; this is analogous to the
Kolmogorov-Arnold-Moser (KAM) theorem that holds in
conservative Hamiltonian systems [5]. Each initial condition
in a conservative system leads to a different marginally
stable orbit, namely a periodic orbit or a chaotic island [12].
With weak dissipation, some of the invariant structures that
are present in the conservative limit become attractors or
semiattractors [15].

The large number of periodic orbits in a conservative system
evolve into a large but finite number of periodic attractors with
the introduction of weak dissipation. The number of attractors
depends on the family of mappings considered as well as the
amount of dissipation introduced [16]. The chaotic sea in the
conservative case evolves into the complex basin boundaries of
the coexisting periodic attractors. Both the area occupied by the
chaotic attractors in parameter space as well as their basin sizes
reduce upon reducing the dissipation. These features of the
transition from dissipative to conservative systems have been
studied numerically in a number of such systems [16,17], most
notably the Hénon and Standard maps. These are respectively
defined by the equations

xn+1 = 1 − ax2
n − (1 − ν)yn, yn+1 = xn (1)

for the Hénon mapping [16,18], and

xn+1 = (1 − ν)xn + a sin(xn + yn),
(2)

yn+1 = yn + xn mod 2π

for the Standard mapping [19], where 2 � ν � 0 and a are
the dissipation and nonlinearity parameters respectively, with
ν = 0,2 being the conservative cases.

III. QUASIPERIODIC DRIVING

We now introduce an external quasiperiodic drive,

xn+1 = G(xn,yn,α) + ε cos 2πθn.
(3)

θn+1 = θn + ω mod 1,
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G(xn,yn,α) being the unforced Hénon or Standard map. The θ

dynamics is an irrational rotation, with 2ω = √
5 − 1. Earlier

studies of strongly dissipative discrete maps with quasiperiodic
forcing [13] reported the creation of SNAs via the collision
route, when a period-doubled torus occupies the same region of
phase space as its unstable parent [20], as well as fractalization
[21]. We restrict ourselves to cases in which ν is close to 0 or 2,
and we study the evolution of the basin of SNAs. A number of
order parameters have been devised to detect and characterize
SNAs. By taking successive rational approximations to the
forcing frequency ω (here the inverse golden mean ratio),
namely ωk = Fk−1/Fk , where Fk are the Fibonacci numbers,
one can systematically investigate the dynamics. The initial
driving angle θ0 in the range 0 � θ0 < 1/Fk is taken as a
parameter to obtain a bifurcation diagram that can reveal the
chaotic regions that contribute to the strange dynamics [4].
The distribution of finite-time Lyapunov exponents (FTLEs)
P (λ,N ) also reveals the finite length chaotic sets embedded in
a trajectory. The fraction of positive FTLEs, F+, as a function
of subtrajectory length N ,

F+(N ) =
∫ ∞

0
P (λ,N )dλ, (4)

is known to decrease with increasing subtrajectory length
N and shows a scaling behavior in the large-N limit for
intermittent SNAs and exponential for the SNAs created via
fractalization [22].

Another useful quantity that correlates with the fractal
geometry of SNAs is the phase-sensitivity exponent 	(N ),
namely the slope of the envelope of the following quantity [4]:

γ (N ) = max
0�k�N

(∣∣∣∣∂x1
k

∂θ

∣∣∣∣
)

; (5)

a power-law growth of 	(N ) is indicative of an SNA.
The evolution of the basin of attraction of SNAs can be

studied via the mean-square displacement 〈r2〉 [23] as its
signature in the phase space. If ψ is any of the phase-space
coordinates and ψref is taken as a reference point (here we use
ψref = 0.001), then

〈r2〉 = 1

M

M∑
i=1

(ψ − ψref)
2 (6)

clusters around a single value for each coexisting attractor.
Furthermore, this quantity converges rapidly with M and thus
provides a good measure in counting the number of coexisting
attractors in addition to providing an estimation of basin sizes.

A. The driven Hénon map

Substituting the Hénon map for G(xn,yn,α) in Eq. (3),
we find that with decreasing dissipation the regions of
bounded dynamics are severely reduced in the parameter space
comprising a, ν, and ε. Here we restrict attention to the a-ν
plane in order to make comparisons with analogous results in
the unforced case. The dynamical regimes with a particular
choice of ε are shown in Fig. 1 (cf. Fig. 5 in Ref. [16]). For
a fixed parameter set indeed most orbits escape, and for those
that do not, one such representative case at the interface of
chaotic and quasiperiodic dynamics is shown in Fig. 2. We

FIG. 1. Schematic diagram showing different dynamical regimes
in the a-ν plane for the Hénon map with ε = 0.26. The regions
corresponding to chaotic motion are marked C, torus dynamics are
T, escape regions are ES, and S is the line along which SNAs occur,
and these have been investigated here.

next analyze the basins of typical SNAs. We locate SNAs
in the phase space (along with other coexisting attractors)
with mean-square displacement 〈r2〉, Eq. (6). After removing
∼106 transients, we iterate 106 initial conditions chosen in
the box, [x,y] = [−4,4] × [−4,11], since it contains all the
bound orbits of the unforced case. We keep the initial phase
θ0 = 0 (other choices do not alter the basic results). We find
that the bound dynamics in the chosen phase-space region
corresponds to SNAs, although other attractors may coexist.
Multistability is reduced depending on forcing strength, and
this makes attractors with small basins difficult to locate.
A typical SNA and its basin are shown in Fig. 2 and the
corresponding histogram of 〈r2〉 is shown in Fig. 3. Each peak
in the histogram represents a possible distinct attractor. Despite
there being multiple blocks in the histogram of comparable
height, the basin for each of these blocks is found to indicate the
same SNA: if the basins are intertwined, numerical uncertainty
makes it very difficult to find the other attractors. We analyzed

FIG. 2. (Color online) (a) A typical SNA along the line “S” in
Fig. 2. (b) Basin of the SNA as obtained via computation of 〈r2〉.
(c) The area under the finite-time largest Lyapunov exponent
distribution corresponding to positive values F+ (black) as a function
of trajectory length N for the SNA in (a). The linear region (dashed
red) has a slope ∼ − 1.54. (d) Phase sensitivity parameter for the
SNA. The system parameter values are a = 0.356 85, ν = 1.98, and
ε = 0.26.
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FIG. 3. Histogram of mean-square displacements 〈r2〉 of the y

coordinate for the attractors formed in the basin shown in Fig. 2(b)
for the Hénon map. Notice the 〈r2〉 has a small extent, indicating
a single attractor. The system parameter values are a = 0.356 85,
ν = 1.98, and ε = 0.26.

SNAs at low-dissipation values using the phase-sensitivity
parameter γ , rational approximations, and the fraction of
positive FTLE’s, F+(N ). Each of these measures confirms that
SNAs do exist for lower and lower dissipation, but obtaining
rational approximations to the attractors presents difficulties
if appropriate initial conditions are not chosen for a given ωk

due to the fractal nature of the basins in the x0-y0-θ0 space. We
choose appropriate initial condition from the slice y0 = 1.5
and obtain the rational approximation to the SNA; see Fig. 4.

Quasiperiodic forcing of the system thus gives SNAs at the
interface of quasiperiodic tori and chaotic dynamics in a-ν-ε
space. We have analyzed them in the low-dissipation regime
for fixed ε, and when there is multistability, SNA basins are
the largest among all coexisting attractors.

FIG. 4. (a) Basin of the eighth rational approximation to an SNA
in the Hénon map at a = 0.356 85, ν = 1.98, and ε = 0.26 in the θ0-x
plane. Here y0 = 1.5 is held fixed. Notice that the θ axis is shown up
to 1/F8. (b) 20th rational approximation of the SNA; notice the small
bifurcation features indicating that the attractor is indeed fractal.

FIG. 5. (Color online) (a) An SNA observed in the Standard map
for parameters ν = 0.02, a = 3.8774, and ε = 0.2; (b) some of the
other coexisting orbits for the same parameter values (circle, square,
triangle-up, triangle-down); (c) the quantity F+ (black) for the SNA
in (a) and its linear fit (dashed red) with slope ∼ − 1.87; and (d) its
rational approximation with ω13 = 144/233.

B. The driven Standard map

In the quasiperiodically driven Standard map as well, there
is typically a single SNA at the interface of chaos and regular
dynamics for large dissipation. With forcing, the multistability
that can be observed in the unforced map [19] is reduced (see
Figs. 5 and 6) to an extent that depends on forcing strength.
For instance, there are five coexisting orbits for the parameter
set a = 3.8774, ν = 0.02, and ε = 0.2, with one of them
being an SNA as can be seen in Fig. 5. In comparison, in
the unforced case as discussed by Feudel et al. [19], more than
200 coexisting attractors can be found.

The quantity F+ and the rational approximation for the
SNA are shown in Figs. 5(c) and 5(d). Basin analysis reveals
that the SNA occupies a significant fraction of the phase space,
Figs. 6 and 7. Using the Lyapunov exponent as an indicator for
the transition from regular to chaotic dynamics, the search for
SNAs has to be performed in a narrow range of the parameter
a. This is difficult to locate to great precision, and long chaotic
transients make the detection of SNAs even more difficult. For
dissipation as low as ν = 0.01, even after removing transients
of length 5 × 109, the nonchaotic nature of the attractor was
difficult to discern.

FIG. 6. Basin of attraction for the SNA in Fig. 5(a) (black) and
other coexisting orbits (white) in the Standard map. The parameters
are ν = 0.02, a = 3.8774, and ε = 0.2.
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FIG. 7. (a) Histogram of mean-square displacements 〈r2〉 in the
basin of SNA, black region in Fig. 6, and (b) phase-sensitivity
parameter γ for the SNA.

IV. DISCUSSION AND SUMMARY

In this paper, we have studied the quasiperiodically driven
Standard and Hénon mappings in the low-dissipation regime.
In the conservative limit, there can be no attractors and thus
no possibility of strange nonchaotic dynamics, but for weak
dissipation, SNAs can be found. The addition of quasiperiodic
driving converts the numerous periodic attractors in weakly
dissipative systems into a relatively small number of attractors,
and when there is an SNA, we find that it has the largest basin
among all coexisting attractors.

In contrast, when there is no forcing, chaotic attractors are
rare in the weakly dissipative limit in these maps (the behavior
is generic as argued in Ref. [14]), both in the phase space
and for different parameters [14]. The interplay of chaotic
and regular regions affected by quasiperiodic forcing results
in the formation of SNAs [4]. The role of chaotic sets in
the present case could have been played by the fractal basin

boundaries and chaotic attractors of the unforced map. We
point out that when chaotic transients are large they delay
the formation of SNAs: One may get SNAs if one waits long
enough. Since multistability is reduced due to forcing, the
observed SNAs are the ones that are born out of the N -band
torus with the largest basin of attraction. In the unforced case,
this would naturally be the N -period orbit with the largest basin
of attraction, and here this is N = 2. This may be expected
since period-2 orbits have the largest range of existence in the
nonlinearity a in the low-dissipation regime, as can be seen in
Fig. 5 of Ref. [16]. Moreover, quasiperiodic forcing truncates
the sequence of period doubling, leading to chaos [4]. The
SNAs reported here are born through the fractalization route,
which is well understood [24].

Thus in a weakly dissipative system, forcing creates SNAs
out of tori with the largest basin of attraction. It should be noted
that long chaotic transients can hinder the detection of SNAs.
In addition, the range (in parameter space) for detecting SNAs
is reduced in the limit |1 − ν| → 0 as this is related to the
reduced “chaotic area” in the unforced case. Such behavior
appears to be generic and can also be seen in other weakly
dissipative systems such as the Ikeda map [1,25].
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