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The synchronization transition is studied in delay-coupled logistic maps. For low coupling, in-phase and
out-of-phase synchronous dynamics coexist, and with increasing coupling there is a regime of quasiperi-
odicity before eventual attraction to a fixed point at a critical value of coupling that depends on the
nonlinearity. The presence of a region of asynchrony separating two synchronized regimes—termed
anomalous behaviour—has been observed earlier in continuous systems and is shown here to occur in
delay mappings as well. There are regions of in-phase, anti-phase, and out-of-phase dynamics of periodic
as well as chaotic attractors.

 2010 Elsevier B.V. All rights reserved.

1. Introduction

Amplitude death [1] and synchronization [2] are among the
most extensively studied of the various dynamical phenomena that
can arise when two nonlinear systems are coupled. In the former
case, two oscillatory systems, when coupled drive each other to
fixed points, resulting in a loss of oscillation (and therefore am-
plitude death). In the latter case, the two systems continue to
oscillate with unique responses to one another [2].

When dealing with coupled systems, most studies have taken
the interaction to be instantaneous. It has often been pointed
out that in order to properly treat many physical or biological
systems—in which the signals that mediate the interaction have
finite transmission time—the interaction could be time-delayed.
Recent studies have probed the manner in which systems synchro-
nize when there is time-delay in the coupling [3–5], and have also
examined the nature of amplitude death [4–6] and synchronization
[3,7,8] when there is delay.

In this Letter, we examine the dynamics of discrete mappings
[9] coupled with delays. Earlier studies of either synchronization
or amplitude death which have largely focused on time-continuous
dynamical systems, namely flows. An advantage in studying map-
pings is that some aspects of the analysis become simpler, particu-
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larly with reference to multistability [10]. Although delay increases
the dimensionality of the problem, unlike the case of flows, the
system remains finite-dimensional in discrete delay mappings. We
find that the dynamics can be periodic, quasiperiodic or chaotic
as the coupling strength is varied, and above a critical coupling
(which depends on the nonlinearity parameter) the dynamics goes
to a fixed point attractor: this, effectively, is the analogue of am-
plitude death in flows. In the transition from periodic motion to a
fixed point (which can also be considered a synchronized state),
there is an intervening asynchronous regime where the motion
is quasiperiodic; this behaviour has been termed anomalous in
the sense that the transition is not uniformly in the synchronized
regime [11,7].

Below we describe the model system of delay coupled maps
studied here. Our results on different synchronization transitions
are presented in Section 3, and this is followed by a summary and
conclusion in Section 4.

2. The model system

We consider bidirectionally coupled maps, with variables de-
noted by x and y respectively,

xn+1 = (1− β) f (xn) + βg(yn),

yn+1 = (1− β) f (yn) + βg(xn+1). (1)

In the present work we take f (x) to be the logistic function,
αx(1 − x). The coupling is asymmetric in the delay, and the cou-
pling function g(.) is taken to be linear. Such maps (in the absence
of delay) have been studied extensively in the past [12], especially
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Fig. 1. (Color online.) Schematic phase diagram in (α,β) parameter space showing
different regions of periodic—Pn (for n = 2, 3, 4, 7, 9, and 11) (light grey), chaotic—
C (dark), quasiperiodic—QP (deep grey) dynamics. In the white region marked FP,
the dynamics goes to a fixed point.

in the context of on–off intermittency [13], and multistability [14].
The control parameters are the nonlinearity α and the coupling
strength β . (We find that the results are very similar with sym-
metric delay coupling, and we briefly discuss the case of nonlinear
coupling in Section 3.)

In the numerical simulations, we start from random initial con-
ditions in x and y. When complete synchronization occurs orbits
coincide, and thus one order parameter for synchronization is sim-
ply the average distance between the trajectories,

D = 〈d〉 = 1
N

〈
N∑

i=1

|xi − yi|
〉

, (2)

the average 〈·〉 being taken over an ensemble of initial conditions.
D clearly should vanish in the synchronized phase while D > 0 in-
dicates a lack of complete synchrony. Other order parameters such
as the largest Lyapunov exponent Λ, the average lagged-difference
m (namely if xk = yk+m) and magnetization µ, the average value of
the “local direction phase” [15,16] S = ±1 (+1 if xn > yn , else −1)
over a trajectory of length N , may also be used to study the rela-
tive dynamics between two or more interacting systems. Here we
only use the distance D and the Lyapunov exponents, and take N
to be 104.

3. Synchronization transitions

When β %= 0, the coupling can drive the system to a stable fixed
point or to stable periodic/quasiperiodic dynamics, and depending
on the value of α, the dynamics of the (uncoupled) logistic maps

Fig. 2. (a) Average distance D between trajectories x and y for fixed parameter
value α = 3.25, (b) the Lyapunov exponents as a function of β . In (c) and (d), the
corresponding results for α = 3.75. βc indicates the transitions from quasiperiodic
motion to fixed point behaviour.

can be periodic or chaotic [17]. Thus these transitions to the sta-
bilized synchronous dynamics can be approached either from the
periodic or from the chaotic regime.

A schematic phase diagram in the (α–β) plane is shown in
Fig. 1 which gives an idea of the different kinds of motion in the
coupled system. Periodic dynamics occurs in the regions marked P
(light grey), while quasiperiodic and chaotic motion occur in the
regions marked QP (deep grey) and C (black) respectively. The
white region corresponds to fixed point (FP) dynamics, and as
can be seen, this region can be approached from either periodic
or chaotic states via intermediate quasiperiodic motion. An earlier
study of tent-maps coupled in a similar fashion [18] had noted the
direct transition from chaotic dynamics to fixed points.

Shown in Fig. 2 are the order parameter D in (a)–(c) and the
largest few Lyapunov exponents Λ in (b)–(d) respectively, the left
and right panels being for different values of nonlinearity. When
α = 3.25 the uncoupled motion is stable period 2 and at α = 3.75,
the motion is chaotic. The curves in Fig. 2(a) and (c) are obtained
from an average of 100 different initial conditions.

For α = 3.25, as β is increased from zero (see Fig. 2(a)–(b))
there is first purely periodic motion (region P in Fig. 1). In this
region there is bistability: depending on initial conditions, both in-
phase and out-of-phase dynamics coexist, and typical trajectories
are shown in Fig. 3(a) and (b) respectively. With further increase
of β there is loss of multistability and the dynamics becomes
quasiperiodic: the x and y motions have a mixed-phase relation
that changes with time. This asynchronous regime is shown in
Fig. 3(c), and the transient dynamics of the two variables x and
y in the fixed point regime is shown in Fig. 3(d).

With further increase in the coupling strength there is a transi-
tion from the quasiperiodic unsynchronized state to a fixed point
at a critical value of the coupling βc . The average distance between
the two trajectories goes to zero at βc (which depends on α of
course) continuously (Fig. 2(a)–(c)) as a power law
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Fig. 3. (Color online.) Time series of x (solid line) and y (dashed line) for α =
3.25 showing (a) in-phase motion and (b) out-of-phase dynamics at β = 0.05,
(c) quasiperiodic behaviour for β = 0.1, and (d) transient dynamics in the approach
to the fixed point at β = 0.25.

D ∝ (β − βc)
ν (3)

and the exponent ν appears to be ∼ 0.5 independent of α and
thus of βc ; see Fig. 4. Similar power-law behaviour was observed
for an analogous transition in a family of unimodal maps with
f (x) = 1 − α|x|z for z > 1. When z ! 1, the map has a cusp at
the maximum and is non-differentiable, and this leads to a dis-
continuous transition [18]. A plot of the Lyapunov exponent as a
function of β (see Fig. 2(b)–(d)) shows a change in the slope at
the transition. We have studied this family of maps as well, and
find that the scaling exponent ν appears to be independent of z
for z " 1 as well.

We note that an asynchronous state intervenes between syn-
chronized periodic motion and the synchronized fixed point. Such
behaviour has been termed anomalous in the context of studies of
phase disorder in coupled systems [11,7] since the subsystems go
out of synchrony as the coupling is increased. The width of the
anomalous regime of quasiperiodic motion increases as a function
of both the parameters α and β (Fig. 1). From Figs. 1 and 2, it is
evident that as the coupling strength is increased, the Lyapunov
exponent starts decreasing. As in other instances of forcing and
coupling, the period-doubling cascade is truncated and we have
not been able to observe periods above 16 in our simulations;
chaos is suppressed due to time-delay interaction. Some odd-order
periodic orbits emerge due to delay in separate islands in the light
grey regions that are interwoven within the quasiperiodic regime
in Fig. 1.

Fig. 4. Variation of D with β − βc for α = 3.75 (star) and α = 3.25 (circle). The
dotted line has slope −0.5.

We have also considered the case of quadratic coupling, with
the function g(x) taken for convenience to be logistic as well
as in other studies without delay [12]. With nonlinear cou-
pling there are two transitions, first from asynchronous to com-
pletely synchronous dynamics which is then followed by the
synchronization–desynchronization transition as above. If, further,
the coupled systems are made nonidentical by changing the non-
linearity parameters, say, different regions of in-phase, anti-phase,
and out-of-phase dynamics in both the periodic as well as chaotic
regimes can be observed.

4. Summary and conclusions

In this Letter, we have studied a simple example of delay cou-
pling between two logistic maps. The coexistence of different sta-
ble attractors at a given set of parameter values is a pervasive fea-
ture of delay-coupled maps, and in the present case there are large
regions in parameter space where both in-phase or out-of-phase
synchronous motions coexist. With increasing coupling strength,
there are transitions from synchronized periodic motion to desyn-
chronized quasiperiodicity and then to a fixed point. We find that
the synchronous periodic and chaotic regimes are suppressed as
a result of the coupling, while asynchronous quasiperiodic motion
(the so-called anomalous regime) and the discrete analogue of am-
plitude death, namely the fixed point solution occupy large regions
in parameter space. The present results differ from (and extend) an
earlier study of time-delay coupled maps [18] where the transition
from multistability to synchrony was described.

We have considered the case of 1-step delay which increases
the dimension of the system by 1; generalization to the case of
k-step delay is straightforward and the results (not presented here)
generalize directly

xn+1 = (1− β) f (xn) + βg(yn),

yn+1 = (1− β) f (yn) + βg(xn−k). (4)

We find that in general, the synchronization region reduces
with the increase of delay, k. There is in-phase synchronization
and a transition to a fixed point for odd k, while for even k there
is anti-phase synchronization.
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There is considerable current interest in the study of time-
delayed systems since a finite velocity of information transmission
is a feature of most natural systems. Interactions in many biolog-
ical and physical systems can be characterized by time-delayed
coupling [12]. The nature of synchronization in time-delay cou-
pled systems with external forcing is an interesting extension of
the above work, and is currently being investigated.
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