ORIGINAL RESEARCH

Data Perturbation Independent Diagnosis and Validation of
Breast Cancer Subtypes Using Clustering and Patterns

G. Alexe'?’, G.S. Dalgin®’, R. Ramaswamy ?#, C. DeLisi®and G. Bhanot"?56

'Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY
10598, U.S.A. 2The Simons Center for Systems Biology, Institute for Advanced Study, Princeton

NJ 08540, U.S.A. *Molecular Biology, Cell Biology and Biochemistry Program, Boston University, 2
Cummington Street, Boston, MA 02215, U.S.A. *School of Information Technology, Jawaharlal Nehru
University, New Delhi 110 067, India. °Biomedical Engineering, Boston University,

44 Cummington Street, Boston, MA 02215, U.S.A. ®°Department of Biomedical Engineering and
BioMaPS Institute, Rutgers University, Piscataway, NJ 08854.

"Jont First Authors.

Abstract: Molecular stratification of disease based on expression levels of sets of genes can help guide therapeutic decisions
if such classifications can be shown to be stable against variations in sample source and data perturbation. Classifications
inferred from one set of samples in one lab should be able to consistently stratify a different set of samples in another lab.
We present a method for assessing such stability and apply it to the breast cancer (BCA) datasets of Sorlie et al. 2003 and
Ma et al. 2003. We find that within the now commonly accepted BCA categories identified by Sorlie et al. Luminal A and
Basal are robust, but Luminal B and ERBB2+ are not. In particular, 36% of the samples identified as Luminal B and 55%
identified as ERBB2+ cannot be assigned an accurate category because the classification is sensitive to data perturbation.
We identify a “core cluster” of samples for each category, and from these we determine “patterns” of gene expression that
distinguish the core clusters from each other. We find that the best markers for Luminal A and Basal are (ESR1, LIV1,
GATA-3) and (CCNE1, LAD1, KRTS), respectively. Pathways enriched in the patterns regulate apoptosis, tissue remodel-
ing and the immune response. We use a different dataset (Ma et al. 2003) to test the accuracy with which samples can be
allocated to the four disease subtypes. We find, as expected, that the classification of samples identified as Luminal A and
Basal is robust but classification into the other two subtypes is not.
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Introduction

Breast cancer (BCA) is a common and heterogeneous disease affecting women of all ages. Its occur-
rence is correlated with levels of estrogen (ER), progesterone (PR) and Her2neu (ERBB2) (Gruvberger
et al. 2001; Lacroix and Leclercq 2005). Clinically, BCA is classified into two major subtypes: ER+
and ER-. These groups are sometimes stratified further by ERBB2 and/or PR levels. Across all treat-
ments, ER+ and/or PR+ patients have a better prognosis than ER- and/or PR- tumors (Anim et al. 2005)
and are also more likely to respond to hormone therapy (e.g. tamoxifen). Over-expression of ERBB2,
seen in 25-30% of cases, is often a marker of aggressive disease, poor prognosis and mixed treatment
results (Diermeier et al. 2005).

In spite of sustained research and medical and pharmaceutical effort, the incidence and death rate of
BCA remains high. In 2005, more than 1.2 million new cases were diagnosed world wide and more than
20% of these will die from the disease (http://imaginis.com/breasthealth/). A major cause of treatment
failure is that tumors with similar histopathology have divergent clinical courses and prognoses. The
goal of the present study is the same as that of many others (Bieche et al. 1995; West et al. 2001; van’t
Veer et al. 2002; Honig et al. 2004; Ahnstrom et al. 2005; Sharma et al. 2005; Osipo et al. 2005), that
molecular profiling of BCA will clarify molecular correlates of disease, and this in turn will improve
choice of therapy, and provide leads to new and more effective therapeutics.

In a series of papers on analysis of cDNA data of BCA tissue samples (Sorlie et al. 2001; Perou
et al. 2000, 2001) the samples were uniquely assigned to one of four distinct categories: Luminal A,
Luminal B, ERBB2+ (or Her2+) and Basal-like. These subtypes were later validated by Sotiriou et al.
2003, Loi et al. 2005 and Kristensen et al. 2005. The first two categories were mostly ER+ and the latter
two mostly ER—negative. In the original analysis of Perou et al. 2000, Basal tumors were characterized
by high levels of keratins 5 and 17, laminin, and fatty acid binding protein 7 genes (see also Charafe-
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Jauffret et al. 2005), whereas ERBB2+ was char-
acterized by high levels of several genes in the
ERBB2 amplicon at 17q12.21 including ERBB2
and GRB7. Other studies identified different
markers (Abd El-Rehim et al. 2005; Bertucci et al.
2005; Farmer et al. 2005; Hu et al. 2006; Sorlie
et al. 2006) and a consensus set of markers for all
BCA patients is not currently available.

Luminal and Basal-like tumors arise in distinct
breast tissue cell types (Perou et al. 2000) and
have very different disease course (Sorlie et al.
2001, 2003) and response to therapeutics (Troester
et al. 2004; Bertucci et al. 2005). The Luminal A
subtype has the best overall prognosis followed by
Luminal B while the other two subtypes are more
aggressive and difficult to treat. The nomencla-
ture of these subtypes has found its way into the
language and culture of clinical practice and affects
treatment options offered to patients. This makes
it important to validate the stability of the original
classification of Sorlie et al. This is the main goal
of the present paper.

The original analysis used simple hierarchical
clustering (Eisen et al. 1998) which is known to be
sensitive to data perturbation (Monti et al. 2003;
van der Kloot et al. 2005). We re-analyzed the
data using a robust averaging procedure to access
the stability of imposing five clusters (4 disease
subtypes + Normal) on the data. The goal was to
identify a “core” set of samples in each subtype
which were stable under data perturbations, and
to use these cores to determine “patterns” of gene
expression for each core. We found stable core
clusters for samples in the Luminal A, Basal and
Normal clusters of the original analysis. However,
the “Luminal B” and “ERBB2+” clusters of
Sorlie et al. were unstable, with only a subset of the
samples from the previous assignment remaining in
stable core clusters under data perturbation. Instead,
the originally assigned samples scattered over two
or more clusters. This suggests that the Luminal
B and ERBB2+ clusters (and their markers) as
identified in Sorlie et al. 2003, are unstable to data
perturbation and need further analysis.

For the Luminal A and Basal categories, we find
a robust set of gene markers and patterns. If we
combine the Sorlie et al. dataset with a new dataset
from Ma et al. and cluster the combined data using
these robust gene markers and patterns, then in the
new data, we can assign a robust subtype label
for Luminal A and Basal but not for the other two
disease phenotypes.

Materials and Methods

Datasets

Data 1: The cDNA dataset of (Sorlie et al. 2003)
was obtained from http://genome-www.stanford.
edu/breast cancer/robustness/data/SupplText.
html. The data had expression levels of N = 552
genes for M = 122 samples of which 112 were
from BCA patients and 10 controls. The 552 genes
were selected by Sorlie et al. to have small varia-
tion in tissue samples from the same patient and
a high variation in tissue samples from different
patients.

Data 2: The Ma et al. dataset was downloaded
from www.geneexpression_ma.org. It consisted
of expression levels of 1940 genes for 93 samples
micro-dissected from 36 BCA patients and 3
normals. The samples were from three stages
of disease: atypical ductal hyperplasia or ADH,
ductal carcinoma in situ or DCIS and invasive
ductal carcinoma or IDC respectively. The genes
made available in the data were chosen by linear
discriminant analysis as markers for breast cancer
progression. ER, PR and HER2neu levels measured
through immunohistochemistry were available.

Preprocessing and Imputation
for Data 1

The matrix of samples (columns) and genes (rows)
was normalized to mean 0 and variance 1 first
across columns and then across rows, ignoring
missing entries. The matrix had 5,027 missing
entries. We first eliminated genes and samples with
more than 20% missing entries. This reduced the
data to N = 530 genes and M = 118 samples. We
imputed the missing entries using a simple gener-
alization of the kNN method of Troyanskaya et al.
2001 as follows:

We identified the k nearest neighbor entries for
missing entry x;; using the Euclidean metric,

d(i,i) = (Zj(xij_ xi,j)Q)l/z

with the requirement that the genes chosen as
nearest neighbors have at least 1% filled entries.
Twenty imputations were done at each x;; using
the range 10 <k < 14 for k and varying ¢ from 50%
to 80% in increments of 10. Let {x,, x,, ..., x;} be
the k-nearest neighbor entries in increasing order
of distance and R be a uniform random number in
(0,1). Then the imputed value
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y is given by y = x;, which satisfies

j—1

X; L X,

i=

where X=2 X;.

i=1

Twenty datasets were generated in this way, one
for each (k,r) value. The clustering was averaged
over these twenty datasets in order to create a set
of clusters insensitive to parameter choice in data
imputation. This averaging is an improvement over
the ANN method because it is stable to both varia-
tion in k and variation in how the neighbors are
chosen (as measured by 7). Multiple clones in the
data were eliminated by averaging after discarding
outliers outside a 95% confidence interval. This
process left 523 genes with no missing entries or
clones. The final data is given in Supplementary
Table 1.

Results

|dentifying “Core” Clusters

We use the letters A, B, C, D, E to denote the five
phenotypes: Luminal A, Luminal B, ERBB2+,
Basal, and Normal respectively. The clusters were
identified using the consensus hierarchical clus-
tering technique of Monti et al. 2003 implemented
in GenePattern (http://www.broad.mit.edu/cancer/
software/genepattern/). This method assesses the
stability of hierarchical clustering across multiple
perturbations of the data. We generated 100 copies
of the dataset by randomly selecting 80% of the
samples. Each copy was hierarchically clustered
using a Euclidean distance metric and the top 5
clusters were selected. For each distinct sample
pair (i, j) in the data, we computed the frequency
F; with which the pair clustered together over the
100 copies of the datasets. The matrix of F; values
is called the “agreement matrix.” Repeating this for
all 20 data imputations and averaging gave the final
“consensus agreement matrix” which is shown in
Supplementary Table 2.

The five core clusters were identified as
bicliques (Alexe et al. 2004) using the agreement
matrix entries as a measure of similarity. We used
the criterion that two samples have the same pheno-
type and belong to the same core cluster if they

have a consensus agreement matrix score greater
than P. For the Luminal A and Basal subtypes, the
value P =90% was sufficient to get an exact match
between the core cluster identified by us and the
assignment in Perou et al. 2000 and Sorlie et al.
2003. However, for samples assigned to Luminal B
and ERBB2+ by the earlier study, these thresholds
needed to be lowered to 50% and 25% respectively
to get agreement with the previous assignments,
suggesting that these categories are considerably
less stable to data perturbation. The five core clus-
ters contained 60 out of the 118 samples.

From the F; values, we define the average agree-
ment score between a sample i and other samples
j in a given cluster C as

wherej =1, ..., n, and n is the number of samples
in the cluster C. F; - was calculated for each
of the five clusters. The results are shown in
Figures 1 a—e. For each phenotype, we used a
cutoff criterion on F; . to assign it to the corre-
sponding core cluster and these samples are
shown in color. Many samples earlier identified
as Luminal B also have a high score in our Basal
core cluster (Figure 1b and 1d). This suggests
that the Luminal B identification is problematic.
Figure 1e also shows that some samples identified
earlier as Luminal A are placed in our “Normal”
core cluster, suggesting that these patients may
have minimal disease. Overall, our analysis shows
that Luminal A, Basal and Normal phenotypes
are robustly classifiable into homogeneous clus-
ters but Luminal B and ERBB2+ do not cluster
well. We find that 36% of the samples previously
placed in the Luminal B category and 55% of
samples previously classified as ERBB2+ are in
fact ambiguous; i.e., their assignments are highly
sensitive to data perturbation and they should be
reanalyzed or classified as ambiguous. The scores
of'some unclassified samples in Sorlie et al. 2003
are shown in Figure 1f. For the samples where
these scores are higher than the cutoff in one core
cluster but not in any other, the corresponding
sample can be assigned a category label by our
clustering.

Table 1 compares the original assignments of
Sorlie et al. with our core clusters of Figure 1 and
shows the sample id’s from the original study.
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Figure 1a. Average agreement scores relative to cluster A.
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Figure 1b. Average cluster agreement scores relative to cluster B.
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Figure 1c. Average cluster agreement scores relative to cluster C.
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Figure 1d. Average cluster agreement scores relative to cluster D.
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Figure 1e. Average cluster agreement scores relative to cluster E.
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Table 1. Summary of the classifications of tumor samples in the core samples (present study) and previous work. Sample identification numbers refer

to the original data of Sorlie et al. 2003. The numbers of samples assigned to each phenotype by the original classification and by our clustering are
shown in columns 5 and 6. We see that a larger fraction of assignments into the phenotypes Normal, Luminal A and Basal are correct. The silhouette

scores are given in columns 7 and 8.
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The agreement fraction between the original
assignment and our assignments is highest for the
Normal, Luminal A and Basal categories and lower
in the other two phenotypes.

For each sample i in a core cluster, we also
calculated the silhouette score (Rousseeuw,1987)
defined by

N JO 10,
S(l)—s(l)—m’

where a(i) is the average dissimilarity between i
and all other samples in the cluster, and b(i) is the
minimum average dissimilarity of i to all samples
in other clusters. If s(7) values in a cluster are close
to unity, the cluster is well defined. An s(i) value
near zero indicates that the sample is between
two clusters. Negative values of s(i/) mean that
the sample is in the wrong cluster. The “silhou-
ette width” of a cluster is the average of the s(7)
scores of all samples in that cluster. The silhouette
widths for our core clusters as well as for the Sorlie
et al. clusters are given in Table 1. The low values
of the average silhouette scores are worrisome.
They suggest either that the stratification into these
phenotypes is problematic or that a better choices
of genes is necessary to separate the phenotypes
more reliably.

|dentifying Robust Gene Markers
Microarray datasets suffer from an overabundance
of genes, most of which do not contribute to the
signal. Identifying differentially expressed genes
for a given set of phenotypes is a difficult problem
for which many methods have been proposed.
These can be divided into two major groups
(Guyon and Ellisseeff, 2003, Inza et al. 2004,
Lai et al. 20006, Jeffery et al. 2006) for supervised
learning:

(i) Filtering or Variable Ranking methods:
These select features based on quality scores. They
include the fold change test (e.g. Mutch et al. 2002;
Breitling and Herzyk, 2005), the t-test (Gossett,
1908, Tusher et al. 2001), the Wilcoxon-Mann-
Whitney test (Bradley, 1968; Lehman, 1975),
the Signal-to-Noise Ratio (SNR) test (Golub
et al. 1999), the J5 test (Patel and Lyons-Weiler,
2004), the D1 test (Patel and Lyons-Weiler, 2004)
etc. Another set of methods measure the "sepa-
rability" of data into different phenotype classes.
These include simple separability (Patel and
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Lyons-Weiler, 2004), weighted separability (Patel
and Lyons-Weiler, 2004), envelope eccentricity
(Alexe et al. 2006), separation measure (Alexe
et al. 2006b) etc. A third class uses information-
theoretic methods such as the entropy criterion
(e.g. Furlanello et al. 2003; Liu et al. 2005), mutual
information (e.g. Tourassi et al. 2001), information
gain (Liu, 2004) etc. Finally, there are the statistical
impurity measures (Su et al. 2003) which include
the two-ing rule, the Gini index, max-minority,
sum-minority, sum-of-variances etc.

(ii) Feature Subset Selection Methods: One such
method selects those features which are useful for
classification for a given machine learning algo-
rithm (e.g. SVM (Vapnik, 1998), ANN (Bishop,
1995), kNN (Ripley, 1996) etc). More sophisti-
cated approaches are embedded methods which
include the selection of features as part of the
training process for the classifier. These methods
are computationally intensive and require efficient
search strategies or a preliminary filtering of the
non-reliable genes to reduce the dimensionality of
the problem.

The existence of such a variety of feature selec-
tion methods poses a challenge in microarray
data analysis. There have been recent attempts to
combine various approaches into a meta selec-
tion procedure based on "majority-voting" using
ranking by predictive content across many data
perturbations and machine learning methods (e.g.
Bhanot et al. 2005; Alexe et al. 2005a). Several
studies (Guyon and Ellisseeft, 2001; Alexe et al.
2005b) have shown that variables which are only
weakly correlated with phenotype are very useful
when used in combinations. This principle has lead
to the development and study of combinatorial
markers or patterns (Crama et al. 1988; Bhanot
et al. 2005; Alexe et al. 2006b).

In the present study, we have chosen to use a
single feature selection method (namely the SNR
test, Golub et al. 1999) which has been shown
(Alexe et al. 2006b) to have good performance on
genomic and proteomic data. However, we cannot
guarantee that it is the best method, particularly
because of the need to impute the missing data in
the dataset of Sorlie et al. As an added check on
the feature selection, we also use the combinatorial
“pattern” method and averaging over data pertur-
bations to reduce the errors from potentially “less
than optimum” choice of features.

We identified a large pool of uni-gene markers
for each core that distinguish it from the others

using the signal-to-noise statistic. For gene i, if
u,(7) and p,(i) be the average gene expression
levels for the core and its complement and o,(7)
and o,(7) the corresponding standard deviations,
the signal-to-noise ratio (SNR) is defined as SNR =
(kg — 1y)/(o, + o). The t-test statistic is the
same as the SNR except that the denominator is
(o, + 6,)"2 Since (o, + 6,) > (5,” + 5,%)"> SNR
1s a more conservative criterion than the t-test.

The SNR statistic is preferred over the t-test in
situations when the sample size in a class is small
(less than 30) because it does not assume a Gaussian
distribution for the underlying variables; an assump-
tion which is implicit in the t-test. When combined
with a permutation test for measuring p-values, the
SNR statistic is a powerful and widely used tech-
nique for feature selection and class discrimination
(e.g. Golub et al. 1999; Ramaswamy et al. 2001;
Shipp etal. 2002; Sun et al. 2004; Goh and Kasabov
2005; Monti et al. 2005) and is implemented in
several software packages (e.g. GenePattern and
Gene Set Enrichment Analysis (GSEA), http://
www.broad.mit.edu/tools/software.html).

The signal-to-noise (SNR) was computed for
each gene for each of the 20 imputed datasets and
for each of the 60 leave-one-out sample perturba-
tion experiments for the core samples. The selected
genes were those whose p-value for the SNR was
below 0.01 and the significance of the SNR for false
discovery rate (FDR) (Benjamini and Hochberg,
1995) was above 0.95 in each experiment.

This procedure identified 391 robust uni-gene
markers (given in Supplementary Table 3) for the
five core clusters. They consisted of overlapping sets
of genes, 238 for Luminal A, 234 for Basal, 66 genes
for Luminal B, 35 genes for ERBB2+and 118 genes
for Normals. These included many genes identified
in previous studies (Perou et al. 2000; Sorlie et al.
2003; Lot et al. 2005). For example, the Luminal
A set included the known estrogen pathway genes
(ESR1, LIV1, GATA-3) and the Basal set the known
genes CCNE1, LAD1, and KRT5.

We further reduced this pool to 148 genes using
the more stringent criteria which used the signifi-
cance of the SNR for several metrics: the false
discovery rate, the Q value (Storey and Tibshirani,
2003), FWER (Dudoit et al. 2002), Bonferroni
correction (Bonferroni, 1935). More details about
the multiple testing metrics we used are given in
Supplementary Information I. These 148 genes
included 79 genes for Luminal A and 60 for Basal
with an overlap of 31 genes. The other phenotypes
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Table 2a. Collection of uni-gene markers for the Luminal A phenotype. The markers are sorted in decreasing
order with respect to to the signal-to-noise ratio.

B 8
a |3 3
3 'QE) Gene Description H % g
6 | g 2 N
8 5
(Y]
437|GATA3 GATA binding protein 3 H72474 | 1.46 | 0.00
431|NAT1 N-acetyltransferase 1 (arylamine N-acetyltransferase) T67128 1.38 | 0.00
438|ESR1 estrogen receptor 1 AA291702 | 1.38 | 0.00
432]LIV-1 LIV-1 protein, estrogen regulated H29315 | 1.37 ] 0.00
420|FLJ11280 **hypothetical protein FLJ11280 N54608 | 1.21 | 0.00
416| TCEAL1 transcription elongation factor A (Sll)-like 1 AA451969 | 1.17 | 0.00
434]|HNF3A hepatocyte nuclear factor 3, alpha T74639 1.09 | 0.00
436 FLT1 fms-related tyrosine kinase 1 (vascular endothelial growth factor/vascular permeability An058828 | 1.04 | 0.00
factor receptor)
421] Homo sapiens mRNA; cDNA DKFZp313L231 (from clone DKFZp313L231) AA029948 | 0.95 | 0.00
444|FBP1 fructose-1,6-bisphosphatase 1 AAB99427 | 0.95 | 0.00
440|PTP4A2 protein tyrosine phosphatase type IVA, member 2 AA504327 | 0.91 | 0.00
439|RABSEP rabaptin-5 AA428477 | 0.90 | 0.00
455|KIAA0239 KIAA0239 protein AA454740 | 0.87 | 0.00
378|BECN1 beclin 1 (coiled-coil, myosin-like BCL2 interacting protein) AA427367 | 0.83 ] 0.00
448|KIAA1025 KIAA1025 protein T72613 | 0.81]0.00
445|MGC27171 hypothetical protein MGC27171 R23619 | 0.81 | 0.00
435|XBP1 X-box binding protein 1 W90128 | 0.80 | 0.00
453|NPEPPS aminopeptidase puromycin sensitive R24894 | 0.79 ] 0.00
425|LOC51313 **AD021 protein N95180 | 0.79 | 0.00
454|HIS1 HMBA-inducible N21081 | 0.78 | 0.00
446|HSD17B4 hydroxysteroid (17-beta) dehydrogenase 4 AA487914 | 0.78 | 0.00
495|CYB5 cytochrome b-5 R91950 | 0.78 | 0.00
429[FLJ10980 hypothetical protein FLJ10980 N45467 | 0.78 | 0.00
442|CEGP1 CEGP1 protein W74079 | 0.77 ] 0.00
443|ACADSB acyl-Coenzyme A dehydrogenase, short/branched chain H95792 | 0.76 | 0.00
426| Homo sapiens mMRNA; cDNA DKFZp434E033 (from clone DKFZp434E033) N63001 0.76 | 0.00
491|MGST2 microsomal glutathione S-transferase 2 W73474 | 0.75 ] 0.00
380]IGBP1 immunoglobulin (CD79A) binding protein 1 AA463498 | 0.74 | 0.00
418|POLYDOM likely ortholog of mouse polydom R33004 | 0.73 | 0.00
496|ALCAM activated leukocyte cell adhesion molecule R13558 | 0.73 | 0.00
414]ASAH1 N-acylsphingosine amidohydrolase (acid ceramidase) 1 AA664155 | 0.71 ] 0.00
399 GRLF1 glucocorticoid receptor DNA binding factor 1 N72276 | 0.71 | 0.00
402|BF B-factor, properdin H80257 | 0.70 | 0.00
39|GLUD1 glutamate dehydrogenase 1 AA017175 | 0.69 | 0.00
428|KIAA0876 KIAA0876 protein AA431721 | 0.69 | 0.00
398|FLJ11730 hypothetical protein FLJ11730 AA427401 | 0.69 | 0.00
493|D5S346 DNA segment, single copy probe LNS-CAI/LNS-CAII (deleted in polyposis) H99681 0.68| 0.00
403|FMO5 flavin containing monooxygenase 5 H52001 0.67 | 0.00
411] Homo sapiens cDNA FLJ40901 fis, clone UTERU2003704 AA418564 | 0.67 | 0.00
::, 430] TLE3 transducin-like enhancer of split 3 (E(sp1) homolog, Drosophila) AA057737 | 0.67 | 0.00
g 433] Homo sapiens, clone MGC:22588 IMAGE:4696566, mRNA, complete cds N74131 0.66 | 0.00
494]|C4B complement component 4B AAB64406 | 0.65 | 0.00
371]QDPR quinoid dihydropteridine reductase R38198 | 0.65 | 0.00
262|ACTG2 actin, gamma 2, smooth muscle, enteric T60048 | -0.65]0.00
256| ESTs AA074677 | -0.66 | 0.00
B9|KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog N20798 | -0.68 0.00
211| TMSB10 thymosin, beta 10 AA486085 | -0.68 ] 0.00
238|FLJ10697 hypothetical protein FLJ10697 H80748 |-0.69] 0.00
243|SLPI secretory leukocyte protease inhibitor (antileukoproteinase) AA026192 | -0.70 | 0.00
180|GSTP1 glutathione S-transferase pi R33642 |-0.70] 0.00
Homo sapiens cDNA FLJ11796 fis, clone HEMBA1006158, highly similar to Homo sapiens
254 transcription factor forkhead-like 7 (FKHL7) gene N22552 ] -0.71]0.00
186|NRG1 neuregulin 1 R72075 |-0.720.00
261|FLJ22678 **hypothetical protein FLJ22678 N90109 |-0.73] 0.00
244/ TONDU TONDU AA700322 | -0.74 ] 0.00
232|PTPRK protein tyrosine phosphatase, receptor type, K R78776 |-0.76] 0.00
248| TRIM29 tripartite motif-containing 29 AA055485 | -0.76 | 0.00
185|PTK7 **PTK?7 protein tyrosine kinase 7 AA453789 | -0.77 ] 0.00
177|CRABP1 cellular retinoic acid binding protein 1 AA454702 | -0.77 ] 0.00
241|CXCL1 chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha) W42723 |-0.77| 0.00
240] Homo sapiens cDNA FLJ14761 fis, clone NT2RP3003302 W93120 |-0.77 | 0.00
187|PREP prolyl endopeptidase AA664056 | -0.77 | 0.00
257|FLJ14525 hypothetical protein FLJ14525 AA464028 | -0.78 | 0.00
234|KIP2 DNA-dependent protein kinase catalytic subunit-interacting protein 2 N79761 |-0.810.00
199|BTG3 BTG family, member 3 N52496 | -0.820.00
97]1D4 inhibitor of DNA binding 4, dominant negative helix-loop-helix protein AA453341 | -0.82] 0.00
245|GABRP gamma-aminobutyric acid (GABA) A receptor, pi AA101225 | -0.84 | 0.00
259|SLC5A6 solute carrier family 5 (sodium-dependent vitamin transporter), member 6 AA186605 | -0.84 | 0.00
68| CSDA cold shock domain protein A AA455300 | -0.85] 0.00
242|CDH3 cadherin 3, type 1, P-cadherin (placental) AA425217 | -0.86 | 0.00
258|B3GNT5 UDP-GIcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5 AA043551 | -0.86 | 0.00
222|LAD1 ladinin 1 T97710 | -0.870.00
213|KIAA1691 KIAA1691 protein N58487 | -0.87 | 0.00
96]ITM3 integral membrane protein 3 AA034213 | -0.88 | 0.00
204]NSEP1 nuclease sensitive element binding protein 1 AA599175 | -0.90 | 0.00
250|MFGES8 milk fat globule-EGF factor 8 protein AA054753 | -0.93] 0.00
183 PLOD procollagen-lysine, 2-oxoglutarate 5-dioxygenase (lysine hydroxylase, Ehlers-Danlos AA476240 | -0.96 | 0.00
syndrome type VI)
251|ZDHHCS5 **zinc finger, DHHC domain containing 5 AA448941 | -1.08 ] 0.00
210]FLJ12442 hypothetical protein FLJ12442 R17469 |-1.100.00
252|CX3CL1 chemokine (C-X3-C motif) ligand 1 R66139 |-1.180.00

254
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Table 2b. Collection of uni-gene markers for the Luminal B phenotype. The markers are sorted in
decreasing order with respect to to the signal-to-noise ratio.

% 3
o |8 >
§ 'E Gene Description § % 5
o s [}
é &
(O]
192 |SDHA succinate dehydrogenase complex, subunit A, flavoprotein (Fp) T70043 1.14 | 0.00
138 |ADRM1 adhesion regulating molecule 1 T46897 1.10 | 0.00
219 |SQLE squalene epoxidase R01118 | 1.07 | 0.00
205 |GGH gamma-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase) AA455800 | 1.03 | 0.00
206 [LC27 putative integral membrane transporter AAG600214 | 0.88 | 0.00
137 [IMGC2477 hypothetical protein MGC2477 T49801 0.84 | 0.00
m [ 195|MDS029 uncharacterized hematopoietic stem/progenitor cells protein MDS029 AA431199 | 0.82 |1 0.00
g 280 |[KCNK1 potassium channel, subfamily K, member 1 N62620 | 0.80 | 0.00
© [ 426 Homo sapiens mMRNA; cDNA DKFZp434E033 (from clone DKFZp434E033) N63001 |-0.82|0.00
442 |CEGP1 CEGP1 protein W74079 |-0.83]0.00
477 |FLJ10948 hypothetical protein FLJ10948 T71152 |-0.83]0.00
351 [PON3 paraoxonase 3 R95740 |-0.88]0.00
266 [LAMC2 laminin, gamma 2 AAG77534 | -0.88 ] 0.00
324 |PAM peptidylglycine alpha-amidating monooxygenase R66309 |-0.89|0.00
332 | Homo sapiens cDNA FLJ37284 fis, clone BRAMY2013590 N89738 |-0.93|0.00

Table 2c¢. Collection of uni-gene markers for the ERBB2+ phenotype. The markers are sorted in
decreasing order with respect to to the signal-to-noise ratio.

,< 3
o |2 o
§ 'E Gene Description § ‘% 5
(&) g q=>
(O] [
o
ERBB2 Y-erb-b2 erythrgblastlc leukemia viral oncogene homolog 2, AA280116 | 2.27 | 0.00
neuro/glioblastoma derived oncogene homolog (avian)
**Homo sapiens mRNA; cDNA DKFZp761B0319 (from clone
9okrzore 1203 19) P ( AA504615 | 1.84 | 0.00
10| TBPL1 TBP-like 1 AA448001 | 1.58 | 0.00
5|TRAP100 thyroid hormone receptor-associated protein (100 kDa) N54470 | 1.43(0.00
o 213|KIAA1691 KIAA1691 protein N58487 | 1.39 | 0.00
o 8|GRB7 growth factor receptor-bound protein 7 H53702 [ 1.21 |1 0.00
S’ 235|KIAA1971 **similar to junction-mediating and regulatory protein p300 JMY N71692 1.12 1 0.00
304|LOX lysyl oxidase AA037732 | 1.08 | 0.00
306|OSF-2 osteoblast specific factor 2 (fasciclin I-like) AA598653 | 1.02 | 0.00
485|FLNB filamin B, beta (actin binding protein 278) AA486238 | -1.01] 0.00
270|CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) H67202 [-1.06]0.00
104|H2BFQ H2B histone family, member Q AA010223 | -1.06 | 0.00
300|CDC42EP4 CDCA42 effector protein (Rho GTPase binding) 4 W32509 |-1.08]0.00
111[FLJ10509 hypothetical protein FLJ10509 R18902 |-1.11]0.00
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Table 2d. Collection of uni-gene markers for the Basal phenotype. The markers are
sorted in decreasing order with respect to to the signal-to-noise ratio.

8
o |3 i
H 'GE, Gene Description ] % nn:
5 c tg 7] w
o c
o [
o
258 B3GNT5 UDP-GIcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5 AA043551 | 1.10 | 0.00
Homo sapiens cDNA FLJ11796 fis, clone HEMBA1006158, highly similar to Homo
254 sapiens transcription factor forkhead-like 7 (FKHL7) gene N22552 1.07/10.00
256| ESTs AA074677 | 1.03 | 0.00
183 PLOD procollagen-lysine, 2-oxoglutarate 5-dioxygenase (lysine hydroxylase, Ehlers- AA476240 | 0.92 | 0.00
Danlos syndrome type VI)
257|FLJ14525 hypothetical protein FLJ14525 AA464028 | 0.85 | 0.00
255|CHI3L2 chitinase 3-like 2 AA668821 | 0.85]0.00
175|SIATAC sialyltransferase 4C (beta-galactosidase alpha-2,3-sialytransferase) AA453813 | 0.84 [ 0.00
215|CCNE1 cyclin E1 T54121 0.84 1 0.00
172]|STK38 serine/threonine kinase 38 AA521346 | 0.84 [ 0.00
199|BTG3 BTG family, member 3 N52496 0.84 1 0.00
273|DGUOK deoxyguanosine kinase R07506 0.83 | 0.00
228|TP53BP2 tumor protein p53 binding protein, 2 H69077 0.81 | 0.00
204 NSEP1 nuclease sensitive element binding protein 1 AA599175 | 0.79 | 0.00
238|FLJ10697 hypothetical protein FLJ10697 H80748 0.76 ] 0.00
272|PRAME preferentially expressed antigen in melanoma AA598817 | 0.76 | 0.00
243|SLPI secretory leukocyte protease inhibitor (antileukoproteinase) AA026192 | 0.75 | 0.00
268 |CP ceruloplasmin (ferroxidase) H86554 0.7510.00
259|SLC5A6 solute carrier family 5 (sodium-dependent vitamin transporter), member 6 AA186605 | 0.72 | 0.00
231|CDK2AP1 CDK2-associated protein 1 R78607 0.72 1 0.00
224|MAFG v-maf musculoaponeurotic fibrosarcoma oncogene homolog G (avian) AA045436 | 0.71 | 0.00
269|RCL putative c-Myc-responsive AA132086 | 0.70 | 0.00
226 | TMSNB thymosin, beta, identified in neuroblastoma cells N91887 0.70 ] 0.00
217 |LANP-L lecuine-rich acidic protein-like protein AA130595 | 0.70 | 0.00
245|GABRP gamma-aminobutyric acid (GABA) A receptor, pi AA101225 | 0.69 | 0.00
233[S100A11 S100 calcium binding protein A11 (calgizzarin) AA464731 | 0.68 | 0.00
185|PTK7 **PTK7 protein tyrosine kinase 7 AA453789 | 0.68 | 0.00
173|DKFZP434L0718 hypothetical protein DKFZp434L0718 AA437140 | 0.67 | 0.00
239| Homo sapiens cDNA FLJ31360 fis, clone MESAN2000572 AA031989 [ 0.67 [ 0.00
222|LAD1 ladinin 1 T97710 0.66 | 0.00
a 506 | CRAT carnitine acetyltransferase AA621218 | -0.65] 0.00
[ 394 |RGS5 regulator of G-protein signalling 5 AAB68470 | -0.66|0.00
8 428 |KIAA0876 KIAA0876 protein AA431721 | -0.66]0.00
431[NAT1 N-acetyltransferase 1 (arylamine N-acetyltransferase) T67128 -0.66 | 0.00
443|ACADSB acyl-Coenzyme A dehydrogenase, short/branched chain H95792 -0.67 | 0.00
458 |FMOD fibromodulin AA485748 | -0.68]0.00
442|CEGP1 CEGP1 protein W74079 [-0.700.00
454 |HIS1 HMBA-inducible N21081 -0.70] 0.00
498| ESTs N73949 ]-0.70]0.00
488|ECE1 endothelin converting enzyme 1 H18427 -0.71/0.00
457 |[RNASE4 ribonuclease, RNase A family, 4 T60163 -0.7110.00
452 |PLAT plasminogen activator, tissue AA447797 |-0.73]0.00
421| Homo sapiens mRNA; cDNA DKFZp313L231 (from clone DKFZp313L231) AA029948 | -0.76] 0.00
346|HRASLS3 HRAS-like suppressor 3 AA476438 | -0.77]0.00
425[LOC51313 **AD021 protein N95180 | -0.78]0.00
501|MRPS14 **mitochondrial ribosomal protein S14 151290 -0.7910.00
387|PR0O1489 hypothetical protein PRO1489 AA131299 [-0.80{0.00
500 SLC11A3 solute carrier family 11 (proton-coupled divalent metal ion transporters), AA056733 | -0.800.00
member 3
495)|CYB5 cytochrome b-5 R91950 -0.82(0.00
429|FLJ10980 hypothetical protein FLJ10980 N45467 |-0.83]0.00
444 |FBP1 fructose-1,6-bisphosphatase 1 AAB99427 |-0.83]0.00
440[PTP4A2 protein tyrosine phosphatase type IVA, member 2 AA504327 |-0.85]0.00
439 [RABSEP rabaptin-5 AA428477 |-0.88]0.00
436 FLT1 fms.-.related tyrosine kinase 1 (vascular endothelial growth factor/vascular AA058828 |-0.91]0.00
permeability factor receptor)
502 DKFZp586H0623'putat|ve UDP-GalNAc:polypeptide N- T51229 -0.94]0.00
acetylgalactosaminyltransferase T9
**Homo sapiens cDNA FLJ11796 fis, clone HEMBA1006158, highly similar to Homo
447 sapiens transcription factor forkhead-like 7 (FKHL7) gene AA495790 | -1.1110.00
445|MGC27171 hypothetical protein MGC27171 R23619 |-1.14]0.00
434 |HNF3A hepatocyte nuclear factor 3, alpha T74639 -1.1810.00
435[XBP1 X-box binding protein 1 W90128 | -1.200.00
437|GATA3 GATA binding protein 3 H72474 |-1.27]0.00
433| Homo sapiens, clone MGC:22588 IMAGE:4696566, MRNA, complete cds N74131 -1.46 | 0.00
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Table 2e. Collection of uni-gene markers for the Normal phenotype. The markers are sorted in decreasing

order with respect to to the signal-to-noise ratio.

9 3
o |8 o
3 'E Gene Description 5 nz: uo:
15 c % 7] ™

8 §

O
252|CX3CL1 chemokine (C-X3-C motif) ligand 1 R66139 1.38 [ 0.00
477[FLJ10948 hypothetical protein FLJ10948 T71152 1.25 [ 0.00
488|ECE1 endothelin converting enzyme 1 H18427 1.18 | 0.00
317|EPAC Rap1 guanine-nucleotide-exchange factor directly activated by cAMP AA453497 1.18 | 0.00
249|KRT17 keratin 17 AA026100 1.16 | 0.00
478| Homo sapiens cDNA: FLJ22566 fis, clone HS101980 AA054715 1.15 ] 0.00
457|RNASEA4 ribonuclease, RNase A family, 4 T60163 1.08 | 0.00
384|GSTM1 glutathione S-transferase M1 AA290737 1.07 | 0.00
w 329|ElIs1 hypothetical protein Ells1 N35592 1.02 | 0.00
Py 248| TRIM29 tripartite motif-containing 29 AA055485 1.00 | 0.00
g 474|ACADVL acyl-Coenzyme A dehydrogenase, very long chain AA464163 0.97 | 0.00
517|APOD apolipoprotein D AA456975 0.95 | 0.00
219|SQLE squalene epoxidase R01118 -0.96 | 0.00
148|LOC55829 AD-015 protein W69583 -1.00] 0.00
156[no_name_3 AA598508 | -1.01]0.00
50|UNG uracil-DNA glycosylase H15111 -1.02 | 0.00
91| TAP1 transporter 1, ATP-binding cassette, sub-family B (MDR/TAP) AA487429 |[-1.05]0.00
203|EBNA1BP2 EBNA1 binding protein 2 R45255 -1.06 ] 0.00
207|PRDX4 peroxiredoxin 4 AA459663 | -1.18| 0.00
41|ARPCS5 actin related protein 2/3 complex, subunit 5, 16kDa W55964 -1.35] 0.00

(Luminal B, ERBB2+ and Normal) had far fewer
gene markers (15 for Luminal B, 14 for ERBB2+
and 20 for Normal core clusters). These genes are
listed in Tables 2 a—d and those also identified in
Sorlie et al. (2003) are marked with a*. A heat
map of the core clusters using these 148 genes is
shown in Figure 2.

Patterns (Multi-gene Markers)

for the Core Clusters

The complexity of BCA makes it unlikely that single
genes can predict phenotype. Instead, one expects
combinations of genes to be better at identifying
phenotype. Consequently, we used “ patterns” (as
defined in Crama et al. 1988; Alexe and Hammer,
2005; Bhanot et al. 2005) to distinguish the core
clusters. A pattern is a set of linear constraints on
the expression levels of a group of genes satisfied
by many samples in a particular cluster and by few
samples in other clusters. For example, the pattern P,
below is satisfied by all samples in the “Luminal A”
cluster and by none of the non-Luminal A samples:

P, = [Expression of GATA3 > 0.49 ].AND.
[Expression of Liv-1 >—0.25]

For illustration, Figure 3 shows two patterns P,
and N, in the 2-d expression plane for GATA3
and Liv-1.

A pattern is characterized by its degree, preva-
lence, and homogeneity. The degree is the number
of genes appearing in its defining conditions. The
prevalence of a pattern is the percent of positive
(negative) cases which satisfy the pattern. The
homogeneity of a pattern is the percentage of
positive (negative) cases covered by it. In general,
patterns useful for classification have low degree
and high prevalence and homogeneity.

We identified all patterns for the 60 core
samples over the selected 148 genes by applying
the combinatorial algorithm described in (Alexe
and Hammer, 2005). Briefly, each sample from a
core cluster was placed in a box by defining cuts
in gene expression space which distinguish it from
the samples belonging to other core clusters. The
boxes were then merged by extending them along
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Figure 2. Heatmap of 148 uni-genes for the samples in core categories.

258 Cancer Informatics Online 2006: 2



Diagnosis and Validation of Breast Cancer Subtypes

all possible dimensions without allowing any
member of the opposite class to be included in
the box. The maximal boxes so obtained defined
the patterns.

The pattern parameters (degree, prevalence, and
homogeneity) were determined by estimating the
classification accuracy of a weighted-voting model
constructed on pattern data through 10-fold cross-
validation experiments. Pattern-based weighted
voting is a meta-classification scheme in which
individual patterns are “voters” for a phenotype.
The performance of a multi-pattern meta-clas-
sification system is better than the performance
of single patterns if the patterns are uncorrelated
(Merz, 1998). Uncorrelated patterns were selected
by requiring the patterns to be defined on non-over-
lapping subsets of features. To avoid over-fitting,
the patterns were required to use no more than five
genes each.

We found many patterns of degree 2 and 3
for each phenotype, each of which was common
to more than 90% of the samples in the cores.
Table 3 presents some of these patterns. The
striking feature of Table 3 is that simple conditions
on a few genes are able to generate a very clean
classification in the cores. Several genes occurred
frequently in the patterns, suggesting an active
association with disease. For example, KIAA1691,
PREP, CX3CL1, LIV-1, PLOD, GATA-3 occur in
20% of patterns for Luminal A, while PRAME,
PLAT, CCNE1, FKHL7, clone MGC:22588
IMAGE:4696566, occur in 15% of the patterns
for the Basal group. There are also several genes

which are good uni-gene markers but are not found
in patterns.

Consistency of Core Assignments

Using Either Patterns or Clustering

A positive pattern is a set of conditions satisfied
by a sample that belongs to a core cluster. A nega-
tive pattern is a set of conditions satisfied by a
sample that belongs to the complement of the core
cluster. For each unlabeled sample we counted the
number of positive minus the number of negative
patterns satisfied by it for each core cluster. The
sample was assigned to the core cluster for which
the ratio obtained by dividing this number to the
total number of patterns for the core cluster, was
positive and maximum. If the maximum ratio was
negative or if it was assigned to multiple core clus-
ters then the sample remained unclassified (Alexe
etal. 2005c¢). The classification of samples to cores
was validated using leave-one-out experiments on
patterns. Over the sixty samples in the cores, in
each such experiment, the entire procedure (gene
selection, pattern extraction and sample classifi-
cation) was repeated sixty times, once for each
omitted sample.

A comparison of our clustering and pattern
assignments with the original classification is
presented in Table 4. The color scheme is that if
the sample is robustly assigned to a phenotype,
its entry is the color of that phenotype. Samples
whose classification is either poor or ambiguous
are in black or left blank respectively. When the

L 2 ° V'S 'S Ve
N *
L >
u | o * o ¢ P o
0 L 3 'Y
L]
‘ ‘ ‘ - | ‘ ‘
2 1.5 1 ‘ 0.5 us h B o5 1 1.5 Liv-1
n® " '
@ Core
L= ] Cluster A
M Non Core
F | Cluster A

Figure 3. An example of a pattern (pattern P,) characteristic of the Luminal A core cluster (Cluster A) and an example of a pattern (pattern
N,) characteristic of the non-Luminal A cases. Notice that P is satisfied by all the samples in the Luminal A group, while N is satisfied by 88%
of the non-Luminal A cases. Both patterns P and N are expressed as bounding constraints on the expressions of genes Liv-1 and Gata-3.
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Table 4. Phenotype classification of breast cancer based on core
clusters and pattern scores.
] se31|s g
s.| & |[€8S5)gE,
z ] [ Scolses
] g2 3 [$35|55%
£ 8o & |&gg|es°®
[ © CR-B i s
Norway 64-BE A |Jcore A A A
Norway 98-BE A Jcore A A A
Norway 29-BE A Jcore A A A
Norway 4-BE A Jcore A A A
Norway FU24-BE A Jcore A A A
Norway 16-BE A |Jcore A A A
Norway 56-BE A Jcore A A A
Norway 18-BE A Jcore A A A
Norway FU15-BE A Jcore A A A
Norway FU37-BE A Jcore A A A
Norway FU17-BE A |Jcore A A A
Norway FU16-BE A Jcore A A A
Norway 8-BE A Jcore A A A
Norway 27-BE A Jcore A A A
Norway 6-BE A core A A A
Norway 74-BE A |Jcore A A A
Norway FU10-BE A Jcore A A A
Stanford 24 A Jcore A A A
Norway FU25-BE A Jcore A A A
Norway FU14-BE A |Jcore A A A
Norway 2-BE A Jcore A A A
Stanford LN4 A E A
New York 1 A E A
Stanford 38 A E
Stanford 31 A E
Stanford 18 A E
Stanford 40 A E
Norway FU40-BE A
Norway 7-BE B Jcore B
Norway 48-BE B Jcore B
Norway 22-BE B Jcore B
Norway 95-BE B Jcore B
Norway 5-BE B Jcore B
Norway FU5-BE B Jcore B
Norway 15-BE B Jcore B
Norway 26-BE B
Norway 19-BE B
Norway 102-BE B A
Norway 11-BE B
Norway FU35-BE C  JcoreC C C
Norway 61-BE C  JcoreC C C
Norway 101-BE C  JcoreC C C
Norway 92-BE C  JcoreC C C
Norway 57-BE C  JcoreC C [
Norway FU27-BE C
Norway FU18-BE C E
Norway FU04-BE C D
Norway 65-2nd T C
Norway FU44-BE C
Norway FU30-AF C B
Norway FU12-BE D Jcore D D D
Norway FU23-BE D Jcore D D D
Norway FU39-BE D [core D D D
Stanford 48 D Jcore D D D
Stanford 14 D |core D D D
Norway FU0B-BE D Jcore D D D
Norway FUO1-BE D [core D D D
Stanford LN46 D Jcore D D D
Norway 41-BE D Jcore D D D
Stanford 23 D |core D D D
New York 2 D Jcore D D D
Norway H5 D Jcore D D D
Norway 81-AF D Jcore D D D
Norway 63-BE D Jcore D D D
Norway 21-BE D Jcore D D D
Norway 37-BE D Jcore D D D
Norway 109-BE D Jcore D D D
Norway FU19-BE D Jcore D D D
New York 3 D |core D D D
NormBreast1 E |core E E E
NormBreast3 E _JcoreE E E
NormBreast2 E_JcoreE E E
Benign STF 37 E Jcore E E E
Benign STF 20 E Jcore E E E
Benign STF 11 E Jcore E E E
Stanford 17 E JcoreE E E
NorwNormBrst E_JcoreE E E
Norway H2 A

Norway 112-BE
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Table 5. Phenotype prediction for previously unassigned breast cancer samples.

Sorlie et al

Clusters
Core clusters
Classification
based on core
cluster scores
Classification

> | based on pattern
models

Sample id

INorway 51-BE
Stanford 16
[Norway 39-BE
[Norway 17-BE
[Norway 10-BE
[Norway 43-AF
[Norway 32-BE
[Norway 85-BE
[Norway Fuo9-BE
[Norway 83-BE
|Norway Fu22-BE
Stanford 6

Stanford 35 |

[Norway 75-BE
INorwayFU43-BE |
[Norway 96-AF
[Norway 90-BE
[Norway 100-BE A
[Norway 111-BE A
[Norway 24-BE

[Norway 104-BE
[Norway Ha-T1 A A
INorway H3 A

[Norway Fu41-BE
[Norway Fu29-BE
|Norway Fuos-BE
Stanford A
[Norway 80-BE
INorway H6
[Norway 53-BE

> B> > |>

b2 b P e Pl B

> |m

m

>
>

>
>

>
>

A
D D
E
c
INorway 47-BE _-_5 C
[Norway Fu26-BE E
[Norway 14-BE | | E D
[Norway Fu45-BE
INorway 55-BE E
Stanford 2 D D
Stanford 45 i
Stanford 44 E
JNorway FUO07-BE D
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Table 6. Classification accuracy of pattern models through leave-one-out

cross validation experiments.

Phenotype Sensitivity (%) Specificity (%)
Core A 100.00 97.44
Core B 71.42 98.11
Core C 80.00 98.18
Core D 100.00 100.00
Core E 87.50 96.15
Average 87.78 97.98
Std. Deviation 12.52 1.39
Confidence Interval (95%) 75.26 - 100.00 96.58 - 99.37

pattern and cluster classifiers agree, the assignment
can be considered accurate. When they differ, no
classification is possible. From a treatment perspec-
tive, the recommendation of such an inconclusive
assignment would be retesting. The clustering and
patterns classifiers for the unassigned samples in
the Sorlie et al. paper are shown in Table 5. Some
of these originally unassigned samples are assigned
to a consistent phenotype by our methods.

Table 6 summarizes the sensitivity and speci-
ficity of the pattern based classifier showing once
again the robustness of the classification into
phenotypes Normal, Luminal A and Basal and
the unreliability of the other two phenotype clas-
sifications.

Validation on an External Dataset
Data 2

We used the markers identified in Data 1 to clas-
sify samples in Data 2. These two datasets had 93
genes in common. Of these, 79 were in our 391
uni-gene set and a subset of 38 of these were in
the smaller subset of 148 genes. Of the latter, 23
were markers for Luminal A, 4 were markers for
Luminal B, 3 were markers for ERBB2+ and 12
were markers for the Basal group. For each of the
38 genes, we normalized the data sets relative to
each other by equating the average intensity of
each gene for the normal samples in the two data
sets. In each dataset, the expression level of each
gene was replaced with its quartile value across all
samples. We recomputed a pattern-based classifier
trained on the known core clusters in the Sorlie
et al. (2003) data and used it to predict the pheno-
type for Ma et al. 2003 samples.

Figure 4 shows a heat map of the 38 genes in
common between the datasets. This plot includes

all core samples from Data 1 and all samples
from Data 2. The Normal samples from both sets
cluster nicely showing that the global normaliza-
tion was done correctly. The Luminal A cluster
is easily identified because all Luminal A core
samples from Data 1 cluster together with several
samples from Data 2. There is also a distinct Basal
cluster with most Data 1 Basal samples and a few
Data 2 samples on its edges. Finally, there is
another cluster with some Core B samples which
looks quite similar to Luminal A. The core C
samples are mixed in with the Basal cluster (as was
already noticed in Figure 1c). We conclude that it
is not possible to assign Luminal B or ERBB2+
phenotypes to samples in Data 2 based on Data
1 because a) There are very few genes in these
categories (3/38 for ERBB2+ and 4/38 for Luminal
B), b) the ERBB2 gene is missing in Data 2 and
c¢) The quality of the patterns using the 38 genes
for these two phenotypes is poor. Indeed, for core
C, there are no patterns at all and for core B, the
patterns are of poor statistical quality.

To further validate the consistency of our
assignments, we trained a pattern-based classifica-
tion model on quartile discretized Data 1 samples
and used it to predict the phenotype for the samples
in Data 2 using majority voting. When the predic-
tion from patterns agreed with the prediction from
clustering as in Figure 4, we felt confident of the
diagnosis, otherwise not. Our predicted phenotypes
for the Ma et al. data are given in Table 7.

Pathways for each Core
To identify processes/pathways that are common
and particular to the different phenotypes, we

used the bioinformatics public resources DAVID
(Dennis et al. 2003), BioRag (Pandey et al. 2004),
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Table 7. Predicted phenotype for samples in Ma et al. data using patterns
from core clusters in Sorlie et al. 2003. We are confident of the pheno-
type assignment for those samples marked in color in columns 9 and 10.

Predicted phenotype
Sample label] Case ID Stages Microdissected Age| ER| PR] HER2 Node* g g PEBE
g5 | ¢
DCIS14 14 N, DCIS (1), IDC (I) 44 |Pos |Pos |[ND ND A A
|ipc14 14 N, DCIS (1), IDC (1) 44 |Pos [Pos [ND ND A A
IDCIS3O 30 N, DCIS (Ill), IDC (lIl) 47 [Neg |Neg |Neg Neg D D
|iocao 30 N, DCIS (1ll), IDC (lI1) 47 |Neg [Neg [Neg Neg D D
IDCIS4’I 41 N, DCIS (1), IDC (Il) 55 |Pos |Pos [ND ND A A
IIDC41 41 N, DCIS (1), IDC (I1) 55 |Pos |Pos [ND ND A A
|DCIS43 43 N, DCIS (1), IDC (Il) 53 |Pos [Neg |Neg Neg C
|ibcas 43 N, DCIS (Il), IDC (1) 53 |Pos [Neg |Neg Neg B
|ocisa4 44 N, DCIS (llI), IDC (1ll) 28 |Pos [Pos |Neg Neg c
|icaa 44 N, DCIS (llI), IDC (1ll) 28 |Pos [Pos |Neg Neg A
DCIS45 45 N, DCIS (I) 36 |Pos [Neg |Neg Neg A
ADH57 57 N, DCIS (I) 36 |Pos |Neg [Neg Neg E D
DCIS57 57 N, DCIS (I) 36 |Pos |Neg |Neg Neg A D
DCIS65 65 N, DCIS (Ill), IDC (lIl) 39 |Pos |Pos |Neg Neg A A
|'DC65 65 N, DCIS (Ill), IDC (lIl) 39 |Pos |Pos [Neg Neg A A
ADH79 79 N, ADH, DCIS (1), IDC (1) 54 |Pos |Pos |Neg Neg E
DCIS79 79 N, ADH, DCIS (1), IDC () 54 |Pos |Pos [Neg Neg A D
|ipc79 79 N, ADH, DCIS (1), IDC (1) 54 |Pos |Pos |Neg Neg A
IDCISBB 88 N, DCIS (Ill), IDC (lIl) 35 |Pos |Pos [ND ND E
|iocss 88 N, DCIS (1ll), IDC (lI1) 35 [Pos [Pos [ND ND A
|ocises 96 N, DCIS (1ll), IDC (lI1) 31 [Neg [Neg |Neg Neg D D
|ioces 96 N, DCIS (1ll), IDC (lI1) 31 [Neg |[Neg |Neg Neg D D
|ocisto2 102 N, DCIS (1), IDC (1) 55 |Pos [Neg |Neg Neg A A
|ioc1o2 102 N, DCIS (1), IDC (1) 55 |Pos [Neg |Neg Neg A A
|ocist12 112 N, DCIS (1ll), IDC (lI1) 31 [Neg |Pos |Neg Neg A
[pc112 112 N, DCIS (1ll), IDC (lI1) 31 [Neg |Pos |Neg Neg A
|ocisi21 121 N, DCIS (Il), IDC (1) 45 |Pos |Pos |Pos Pos A
|ipc121 121 N, DCIS (Il), IDC (1) 45 |Pos |Pos |Pos Pos A A
IDCIS13O 130 N, DCIS (1), IDC (Il) 54 |Pos |Pos [Neg Neg A
IIDC130 130 N, DCIS (1), IDC (Il) 54 |Pos |Pos [Neg Neg A
ADH131 131 N, ADH, DCIS (ll), IDC (Il) 37 |Pos |Pos [Pos Pos E D
DCIS131 131 N, ADH, DCIS (ll), IDC (Il) 37 |Pos |Pos [Pos Pos A A
|'DC131 131 N, ADH, DCIS (ll), IDC (Il) 37 |Pos |Pos [Pos Pos A A
IDCIS133 133 N, DCIS (Ill), IDC (lIl) 44 |Neg [Neg |Pos Pos C D
IIDC133 133 N, DCIS (Ill), IDC (lIl) 44 |Neg [Neg |Pos Pos D D
IDCIS148 148 N, DCIS (1), IDC (Il) 42 |Pos [Pos |Neg Neg A A
IIDC’I48 148 N, DCIS (1), IDC (Il) 42 |Pos [Pos |Neg Neg A A
|ocists2 152 N, DCIS (Il), IDC (1) 42 |Pos [Pos |Neg Neg A
|ioc1s3 153 [N, IDC (1) 46 [Pos |Pos [Pos Pos A A
|ocisteg 169 N, DCIS (Il), IDC (1) 34 |Pos [Pos |Neg Neg A A
IIDC169 169 N, DCIS (1), IDC (Il) 34 |Pos |Pos [Neg Neg A A
IDCIS17O 170 N, DCIS (1), IDC (Il) 44 [Pos |Pos |Pos-FISH | Pos-FISH A
IIDC’I70 170 N, DCIS (1), IDC (Il) 44 [Pos |Pos |Pos-FISH | Pos-FISH A
DCIS173 173 N, DCIS (1), IDC (1) 52 |Pos [Pos |Neg Neg A A
DCIS178 178 N, DCIS (Ill), IDC (lIl) 43 |Pos |Pos |Pos Pos A
|ipc17s 178 N, DCIS (1ll), IDC (lI1) 43 |Pos [Pos [Pos Pos A
IDCIS179 179 N, DCIS (Ill), IDC (lIl) 37 |Neg |Neg |Pos-FISH | Pos-FISH C
lioci7e 179 N, DCIS (1ll), IDC (lI1) 37 [Neg |Neg |Pos-FISH | Pos-FISH c
ADH180 180 N, ADH, DCIS (1), IDC () 46 |Pos [Pos |Neg Neg A A
DCIS180 180 N, ADH, DCIS (1), IDC (1) 46 |Pos [Pos [Neg Neg A
DCIS183 183 N, DCIS (Il) 46 IND |ND |ND ND A D
ADH191 191 N, DCIS (Il) 46 IND |ND |ND ND A A
DCIS191 191 N, DCIS (Il) 46 IND |ND |ND ND A A
ADH193 193 N, ADH, DCIS (1), IDC (1) 45 |Pos [Pos [Neg Neg A A
DCIS193 193 N, ADH, DCIS (1), IDC (1) 45 |Pos |Pos |Neg Neg A A
|ipc193 193 N, ADH, DCIS (1), IDC (1) 45 |Pos [Pos [Neg Neg A A
|ocis19s 198 N, DCIS (1), IDC (1l) 30 |Pos |Pos |Neg Neg A A
|ipc1es 198 N, DCIS (1), IDC (1l) 30 |Pos |Pos |Neg Neg A
ADH210 210 N, DCIS (1), IDC (II) 30 [Pos |Pos |Neg Neg E D
DCIS210 210 N, DCIS (1), IDC (1l) 30 |Pos |Pos |Neg Neg A
ADH213 213 N, DCIS (1), IDC (Il) 30 [Pos [Pos |Neg Neg A D
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Table 8. A complete listing of the associated pathways for the biomarkers

on the web (BIOCARTA, KEGG, GENMAPP).

available in different databases

Group Gene description GeneBank Pathway Related cancer type or pathway
ESR1 estrogen receptor 1 AA291702  |Nuclear_Receptors Breast cancer related
Breast cancer related, Loss of c-kit expression
H n 0,
vt oy s e e
feline sarcoma viral oncogene N20798 Regulation of BAD phosphorylation P » Sugg gap ) .
development of tumors. Introduction of the c-kit
homolog R
gene leads to growth suppression of a breast
cancer cell line, MCF-7 (Nishida et al., 1996)
. Neuroregulin receptor degredation protein-1 Controls |Breast cancer related, direct ligand for ERBB3
NRG1 neuregulin 1 R72075 ErbB3 receptor recycling and ERBBA4. Indirect activator of ERBB2.
NSEP1 nuclease sensitive Breast cancer related. Target of Akt
element binding orotein 1 AA599175 |D4-GDI Signaling Pathway phosphorylation. Disruption inhibits tumor growth
ap (Sutherland et al., 2005)
Cancer related. May contribute to rat mammary
04 s of NA g
dominant negative helix-loop-helix |AA453341 TGF-beta signaling pathway P . . 9
rotein mammary epithelial cell growth (Shan et al.,
P 2003). Down-regulated in gastric adenocarcinoma
and leukemia.
GSTP1 glutathione S-transferase R33642 Multi-Drug Resistance Factors,Glutathione Cancer related. Lost in prostate cancer, lung
pi metabolism cancer and squamous cell carcinoma.
TFF3. Homo sapiens, clone Cancer related. TFF3, activates STAT3
MGC:22588 IMAGE:4696566, N74131 Trefoil Factors Initiate Mucosal Healing (oncogene) signaling in human colonic cancers
mRNA, complete cds (Rivat et al., 2005).
FLT1 fms-related tyrosine kinase
1 (vascular endothelial growth AAQ058828 |VEGF, Hypoxia, and Angiogenesis Cancer related, angiogenesis
factor/vascular permeability factor - FYP ! 9log »anglog :
receptor)
core A SLPI tory leukocyt t P ithelin C ion to Epitheli d Wound
SLPI secretory leukocyte protease|  \ 15105 roepithelin Conversion to Epithelin and Woun Immune response related.
inhibitor (antileukoproteinase) Repair Control
BF B-factor, properdin H80257 Complement and coagulation cascades Immune response related.
C4B complement component 4B |AA664406 |Complement and coagulation cascades Immune response related.
ASAH1 N-acylsphingosine Anti-apoptotic. Metabolizes ceramide to
amidohydrolase (acid ceramidase)|AA664155  |Glycosphingolipid metabolism sphingosine-1-phosphate (SPP), an inducer of
1 proliferation.
PLOD procollagen-lysine, 2-
oxoglutarate 5-dioxygenase . . . .
(lysine hydroxylase, Ehlers-Danlos AA476240 |Lysine degradation tissue modelling
syndrome type VI)
ACTG2 actm,Agamma 2, smooth T60048 Cholera - Infection tissue modelling
muscle, enteric
ACADSB acyl-Coenzyme A
dehydrogenase, short/branched  [H95792 Fatty_Acid_Synthesis,Bile acid biosynthesis
chain
FBP1 fructose-1,6- . .
bisphosphatase 1 AAB99427  |Glycolysis / Gluconeogenesis
. Mechanism of Gene Regulation by Peroxisome
HSD17B4 hydroxysteroid (17- AA487914  [Proliferators via PPARa(alpha), Androgen and
beta) dehydrogenase 4 )
estrogen metabolism
MGST2 microsomal glutathione S-|\y75474 | Gjutathione metabolism
transferase 2
QDPR quinoid dihydropteridine R38198 Folate biosynthesis
reductase
1GLUD1 glutamate dehydrogenase AA017175  [Glutamate metabolism
(G(:(;:ugir::a—glutamyl hydrolase Cancer related. Identified as a biomarker for
Jugase, AA455800 |Folate biosynthesis pulmonary neuroendocrine tumors (he et al.,
folylpolygammaglutamyl
2004)
hydrolase)
Cancer related. Involved in tumor invasion and
metastases e.g. in pancreatic ductal
core B LAMC2 laminin, gamma 2 AA677534  |Inflammatory_Response_Pathway adenocarcinoma (Takahashi et al., 2002) and
endometrial adenocarcinomas (Maatta et al.,
2004).
SDHA succinate dehydrogenase
complex, subunit A, flavoprotein | T70043 Oxidative phosphorylation
(Fp)
PONS3 paraoxonase 3 R95740 gamma-Hexachlorocyclohexane degradation

(continued)
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continued)
Group Gene description GeneBank Pathway Related cancer type or pathway
ERBB2 v-erb-b2 erythroblastic
leukemia v'|ral oncogene homolog AA480116  |Role of ERBB2 in Signal Transduction and Oncology |Breast cancer related
2, neuro/glioblastoma derived
oncogene homolog (avian)
Breast cancer related, matrix metalloprotease-1
F2R coagulation factor Il AA455910 | Thrombin signaling and protease-activated receptors receptor that promotes invasion and
core C [(thrombin) receptor 9 9 P P tumorigenesis of breast cancer cells (Boire et al,
2005)
Breast cancer related, ESR1 coactivator.
PPARBP PPAR binding protein | T57034 CARMA and Regulation of the Estrogen Receptor |0 /SreXpressed in breast cancer. May play a role
in mammary epthelial differentiation (Zhu et al.,
1999)
FLNB filamin B, beta (actin . .
binding protein 278) AA486238 |MAPK signaling pathway
CDK6. Homo sapiens cDNA Breast cancer related. CDK6 gene, inhibits
FLJ31360 fis, clone AA031989 |Cyclins and Cell Cycle Regulation proliferation of human mammary epithelial cells
MESAN2000572 (Lucas et al., 2004)
SIAT4C §|alyltransferase 4C (beta Steps in the Glycosylation of Mammalian N-linked Cancer related. Down-regulated in RCC (Saito et
galactosidase alpha-2,3- AA453813 ; )
. Oligosaccarides al., 2002)
sialytransferase)
Homo sapiens, clone MGC:22588 Cancer related. TFF3, activates STAT3
IMAGE:4696566, mRNA, N74131 Trefoil Factors Initiate Mucosal Healing (oncogene) signaling in human colonic cancers
complete cds (Rivat et al., 2005).
FLT1 fms-related tyrosine kinase
1 (vascular endothelial g.r.OWth AA058828 |VEGF, Hypoxia, and Angiogenesis Cancer related, angiogenesis.
factor/vascular permeability factor
receptor)
PLOD procollagen-lysine, 2- Catalyzes the hydroxylation of lysyl residues in
oxoglutarate 5-dioxygenase . . collagen-like peptides. The resultant hydroxylysyl
(lysine hydroxylase, Ehlers-Danlos AA476240  Lysine degradation groups are attachment sites for carbohydrates in
syndrome type VI) collagen
**Homo sapiens cDNA FLJ11796
fis, clone HEMBA1006158, highly .
similar to Homo sapiens AA495790 |Integrin-mediated cell adhesion g:gc?;;elst?gt.i?HOB protein, tumor suppressor
core D transcription factor forkhead-like 7 proapop :
(FKHL7) gene
lSLIlDI.secretolry Ieukocytle protease AA026192 Proep|thel|n Conversion to Epithelin and Wound Immune response related.
inhibitor (antileukoproteinase) Repair Control
::sﬁl plasminogen activator, AA447797 |Complement and coagulation cascades Tissue remodelling
FMOD fibromodulin AA485748  |Small Leucine-rich Proteoglycan (SLRP) molecules Affects the relite of fibrils format|on. May have a
primary role in collagen fibrillogenesis
DGUOK deoxyguanosine kinase [R07506 Purine metabolism
ACADSB acyl-Coenzyme A
dehydrogenase, short/branched |H95792 Fatty_Acid_Synthesis,Bile acid biosynthesis
chain
FBP1 fructose-1,6- . "
bisphosphatase 1 AAB99427  |Glycolysis / Gluconeogenesis
MAFG v-maf musculoaponeurotic
fibrosarcoma oncogene homolog [AA045436 |Oxidative Stress Induced Gene Expression Via Nrf2
G (avian)
CP ceruloplasmin (ferroxidase) H86554 Porphyrin and chlorophyll metabolism
E?T"M glutathione S-transferase | ) 590737 | Glutathione metabolism
core £ ACADVL acyl-C A
acy-Loenzyme A - 1aa464163 |Fatty_Acid_Synthesis,Bile acid biosynthesis
dehydrogenase, very long chain

iHOP (Hoffmann and Valencia, 2004) and BRB
Tools (http://linus.nci.nih.gov/BRB-ArrayTools.
html). The method used for GO functional class
scoring is given in Supplementary Information II.

Table 8 is a detailed explanation of some of
the 148 uni-gene biomarkers identified for each

core (see also Tables 2a—d). Table 9 presents the
GO categories enriched for the genes associated
with the cores. The statistical significance of the
enriched GO categories is computed as described
in Supplementary Information II. The complete list
of gene markers for the core phenotypes involved
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in the enriched GO categories is available in
Supplementary Table 4.

Whereas we discuss markers for each core
subtype, we have strong confidence only in the
markers for Luminal A and Basal.

In Luminal A, ESR1 is up-regulated, indi-
cating that the estrogen receptor pathway is
turned on.

The KIT gene was already known to be lost in
breast cancer. Introduction of the c-kit gene leads to
growth suppression of a breast cancer cell line, MCF-7
(Nishida et al. 1996). The Neuregulin 1 gene, which
is up-regulated, is a direct ligand for ERBB3 and
ERBBA4, and an indirect activator of ERBB2, though
the ERBB2+ subtype is identified with Cluster C. The
nuclease sensitive element binding protein (NSEP1),
which is also up-regulated, is known to inhibit p53
induced apoptosis (Zhang et al. 2003). It has also been
recently shown to be a target of Akt phosphorylation,
and that disruption of phosphorylation inhibits tumor
growth (Sutherland et al. 2005). This gene is involved
in D4-GDI signaling pathway, which may also be
up-regulated.

A number of Luminal A markers were previ-
ously identified cancer related genes. The ID4
gene, which was also reported to be down-regu-
lated in gastric adenocarcinoma and leukemia,
may cause the alteration of the TGF-beta signaling
pathway which regulates the growth and prolifera-
tion of cells, blocking the growth of many different
cell types. The TGF-beta receptor includes
Type I and Type II subunits that are serine-
threonine kinases that signal through the Smad
family of proteins. Another cancer related gene is
GSTP1, which was reported to be lost in different
types of cancers including prostate cancer, lung
cancer and squamous cell carcinoma. Other cancer
related genes include the TFF3 gene, which was
shown to activate STAT3, (an oncogene) signaling
in human colonic cancers (Rivat et al. 2005) and
the VEGF receptor FLT1 gene.

Other Luminal A marker genes include up-regu-
lated immune system related genes (SLPI , BF,
and C4B), anti-apoptotic gene ASAHI; collagen
related gene PLOD and actin gamma 2 gene. Other
genes constitute mostly metabolic genes (with a
significant enrichment, see Table 9), including
fructose-1,6-bisphosphatase 1 (FBP1), glutamate
dehydrogenase 1 (GLUD1) and acyl-Coenzyme A
dehydrogenase (ACADSB).

Biomarkers for Cluster B (Luminal B)
include fibroblast growth factor FGFR4 which

might be from the fact that this family of genes
is known to be overexpressed in cancers of the
cervix and bladder, though their role in breast
cancers is more controversial (Streit et al. 2004;
Jezequel et al. 2004); two cancer related genes:
Gamma-glutamyl hydrolase (GGH) gene, which
was also identified as a biomarker for pulmo-
nary neuroendocrine tumors (He et al. 2004),
and laminin, gamma 2 (LAMC2) gene, which
was reported to be involved in tumor invasion
and metastases in pancreatic ductal adenocar-
cinoma (Takahashi et al. 2002) and endometrial
adenocarcinomas (Maatta et al. 2004). The latter
gene is down-regulated in the breast cancer data
sets analyzed here.

Generally, Cluster C (ERBB2+ subtype)
biomarkers appear to be mostly receptors, receptor
binding proteins and signal transduction related
proteins (Table 9). As expected, the most charac-
teristic of these genes is the up-regulated ERBB2
gene. Other important genes include two breast
cancer related genes, namely, the F2R gene, a matrix
metalloprotease-1 receptor that promotes invasion
and tumorigenesis of breast cancer cells (Boire
et al. 2005); and PPAR binding protein, coactivator
of ESR1 and overexpressed in breast cancer (Zhu
etal. 1999). The down-regulation of FLNB filamin
B alters the MAP Kinase pathway with implications
in both growth control and development.

The marker genes for the Basal phenotype
(Cluster D) are significantly involved in cell
cycle, regulation of cell proliferation, endoplasmic
reticulum as well as in various metabolic processes.
Important cancer related genes identified for this
phenotype are CDK6 gene, which inhibits prolif-
eration of human mammary epithelial cells (Lucas
et al. 2004); SIAT4C, which is down-regulated in
RCC (Saito et al. 2002), RHOB, which is known to
be a pro-apoptotic and tumor suppressor gene, and
the FLT1 and TFF3 gene. Plasminogen activator
gene (PLAT) is involved in tissue remodeling while
fibromodulin (FMOD) gene has a primary role in
collagen fibrillogenesis.

The last of the clusters is the control or normal
group. Here we find that the genes identified as
significant markers are involved in organelle orga-
nization and biogenesis, cytoskeleton organization
and biogenesis, or in metabolic pathways (e.g.
cofactor biosynthesis). These represent genes that
are pathologically expressed in all tumor strata;
consequently they are able to robustly stratify BCA
samples from control (Normals).
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Table 9. Enriched GO properties for the core phenotypes.

(%]
> El s |8
S S 8o 8 o
@ 4 32 3 3
Group w GO description ° ET ET
o [0 O [
o el o o o o
o} £ » 0
> | X
core A 19752 |carboxylic acid metabolism 19 0.002 0.000
6519 |amino acid and derivative metabolism 0.040 0.001
core B 6732 |coenzyme metabolism 8 0.008 0.068
16591 [DNA-directed RNA polymerase II\, holoenzyme 5 0.000 0.126
5102 |[receptor binding 25 0.000 0.005
5654 |nucleoplasm 9 0.000 0.156
core C
4872 |receptor activity 40 0.001 0.025
7165 |signal transduction 96 0.004 0.214
6366 [transcription from RNA polymerase Il promoter 22 0.005 0.088
5783 |endoplasmic reticulum 24 0.047 0.003
74  |regulation of progression through cell cycle 20 0.008 0.064
core D 19752 |carboxylic acid metabolism 19 0.020 0.005
4674 |protein serine/threonine kinase activity 17 0.297 0.008
42127 |regulation of cell proliferation 12 0.011 0.008
6996 |organelle organization and biogenesis 24 0.006 0.029
5200 |[structural constituent of cytoskeleton 9 0.001 0.009
core E 30036 |actin cytoskeleton organization and biogenesis 7 0.008 0.073
6928 |cell motility 7 0.008 0.056
51188 |cofactor biosynthesis 5 0.006 0.032

Overall, the biomarkers notably constitute genes
that participate in breast cancer related pathways
(e.g. marker genes involved in estrogen receptor
pathway) and genes that were previously impli-
cated in other cancer types (e.g. GSTPI1, FLT1,
see Table 8). Moreover, the enriched categories in
each phenotype are biologically plausible, having
already been implicated in cancer transformation
(e.g. cell cycle, cell motility, cytoskeleton organi-
zation) (Hanahan and Weinberg, 2000) or being
potentially important in transformation (signal
transduction pathways, metabolism).

Summary and Discussion

We have presented a robust clustering and pattern
based analysis of the phenotypes identified by
Sorlie et al. 2003. We find that the clusters for
Luminal A, Basal and Normal subtypes are homog-

enous and have predictive content. However, the
Luminal B and ERBB2+ assignments are sensitive
to data perturbations. One reason for this is that
the genes chosen for the classification are too few
and not appropriate for these two categories. This
is evidenced by the fact that the number of genes
for Luminal B and ERBB2+ that pass our stringent
robustness filters is small. Another reason is that
hierarchical clustering is inappropriate to resolve the
subtleties of the Luminal B and ERBB2+ categories.
Finally, these subtypes are more heterogeneous than
Luminal A and Basal and possibly have further
substructure not classifiable with the genes in this
dataset. A larger number of samples and better/more
genes are necessary to test these conclusions.
Several samples previously unclassified in
Sorlie et al. 2003 were classifiable by our tech-
niques. We also found several samples which show
a complex (multiple) phenotype signature. Given
the treatment implications, the patients from whom
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these samples were taken should undergo further
analysis or different treatment.

We also describe a general method to deal with
sensitivity to noise in gene array data, which often
confounds the analysis. There are four principal
sources of noise. The first, which we cannot do
anything about, is the experiment itself: a) different
samples handled differently in and experiment or
between different labs; b) data improperly collected
or improperly recorded/measured; ¢) microarray or
cDNA readout with missing or unreliable entries.
The second type of “noise” is stochastic noise;
from statistical errors in the measurement of the
signal or from normal variation within a phenotype
in the sample population. We show how to partially
account for this noise by data perturbations and
consensus analysis. A third source of noise is the
data analysis methods used. In particular, there are
many different definitions of distance between gene
expression vectors and many different clustering
techniques. These often lead to different clusters
depending on parameter choices, and to clusters
that are unstable to perturbations. Our method
robustly deals with this issue to get reliable predic-
tions. A fourth source of noise derives from the
genes selected as the basis for the analysis (Ein-Dor
et al. 2005). This set results both from the initial
choice of genes on the chip and the subset of genes
that is used in the clustering. The choice of genes
on chips will improve only if chip manufactures
come up with better chips, possibly motivated by
the biology of the underlying processes. However,
given a gene set, this paper describes a procedure to
select a data perturbation independent and predic-
tive subset of the genes.

The fundamental requirement of any clustering
analysis is the assignment of confidence levels
to clusters. This is particularly important in gene
expression analysis where a small sample set is clus-
tered using a large set of noisy genes which makes
the clustering results sensitive to noise and suscep-
tible to over-fitting. Our methods use re-sampling
and cross validation to simulate perturbations of the
data, and this allows us assess the stability of the
clustering with respect to sample variability.

In functional genomics, agglomerative hierar-
chical clustering (HC) has been widely adopted as
the unsupervised analysis tool of choice, mainly
because of its intuitive appeal and its visualization
properties. By not committing to a specific number
of clusters, HC provides for a multi-resolution
view of the data that can be extremely useful in

exploratory data analysis. However, the method
does not provide for an “objective” criterion to
establish the number of clusters and the clusters’
boundaries. Furthermore, the resulting trees are
known to be highly unstable to small perturbations
of the data. The trees also tend to preserve sample
joining errors made at earlier stages.

To correct for these problems, we recommend
averaging over perturbations of the original data.
The hierarchical clustering algorithm can then be
applied to each of the perturbed data sets, and the
agreement, or consensus, among the multiple runs
can be assessed. This technique will measure the
“stability” of the discovered clusters to sampling
variability. The basic assumption of the method is
intuitively simple: if the data represent a sample
of items drawn from distinct sub-populations, and
if we were to observe a different sample drawn
from the same subpopulations, the induced cluster
composition and number should not be radically
different. Therefore, the more the attained clusters
are robust to sampling variability, the more confi-
dent we can be that these clusters represent real
structure. Overall, the procedures suggested here
will be of use in examining any data in a way that
makes the predictions insensitive to stochastic and
systematic variation.

A frequent concern in gene-array data and
analysis is whether the data is reproducible, and
whether the inferences are consistent with current
biological knowledge. In this paper we address the
first issue by applying the results of our analysis
on one data set to make predictions on another.
For the phenotypes which cluster well, we can
make definite predictions on the unseen data. In
addition, we identify pathways via genes whose
markers are predictive of phenotype. It is likely that
these genes have only diagnostic value, i.e. they
are downstream effects of an established disease
process whose cause is outside the identified set
of genes. This is a problem with most microarray
data which is usually available only for cells which
show established disease.
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Supplementary Information

Supplementary Information |: Multiple Testing Correction Metrics
The general multiple hypothesis testing analysis used in our paper results in the following matrix:

# non-rejected #rejected
hypotheses hypotheses
# true null U v
hypotheses (non-diff. genes) Type I error M,
# false null T
hypotheses (diff. genes) Type Il error S M,

We use the following statistics to analyze this

table.

False discovery rate (FDR). The FDR (Benjamini
and Hochberg 1995) is the expected proportion
of Type I errors among the rejected hypotheses:
FDR = E(Q); with Q=V/Rif R> 0 and Q = 0; if
R=0.

The g-value of a gene (Storey and Tibshirani,
2003) is defined as the minimal FDR at which it
appears significant.

Family—wise error rate (FWER, Dudoit et al.
2003). The FWER is defined as the probability of
at least one Type I error (false positive): FWER =
Pr(V'>0)

The Bonferroni correction (Bonferroni 1935) :
Suppose we conduct a hypothesis test for each gene
g =1,...,N, producing an observed test statistic:
T, , an unadjusted p—value: p,. = the probability
under the null hypothesis that the test statistic is at
least as extreme as 7. Under the null hypothesis,
Pr(p,<a)=a.

Bonferroni adjusted p—values: p,=min (1,N p,.)
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In Studi in Onore del Professore Salvatore Ortu Carboni. Rome:
Italy, p 13-60.

Dudoit, S., Popper Shaffer, J. and Boldrick, J.C. 2003. Multiple hypothesis
testing in microarray experiments. Statistical Science, 18:71-103.

Storey, J.D. and Tibshirani, R. 2003. Statistical significance for genome-wide
studies. Proc. Natl. Acad. Sci. U.S.A., 100:9440-5.

Supplementary Information II:
Functional class scoring

for GO categories

We computed the statistical significance of a GO
category within a collection of N gene markers
by following Pavlidis et al. 2004: A p-value was
computed for each of the N marker genes in our
collection. Next, the set of p-values was tested for
enrichment in a GO category by using the Func-
tional Class (LS) and the Kolmogorov-Smirnov
(KS) statistics. For a set of N genes, these are
defined as

N

LS =D (—log p,)IN

i=1

i
KS = max 7 — p,
The statistical significance of a GO category with
N genes was measured by computing the empirical
distribution of LS and KS from 100,000 random
selections of N genes in the complete pool of genes.
The LS/KS permutation p-value was computed by
comparing the LS/KS statistics in these experi-
ments to the measured value of these statistics for
the selected genes. A GO category was considered
enriched if'its corresponding LS or KS re-sampling
p-value was below 0.005.
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