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Abstract: Molecular stratifi cation of disease based on expression levels of sets of genes can help guide therapeutic decisions 
if such classifi cations can be shown to be stable against variations in sample source and data perturbation. Classifi cations 
inferred from one set of samples in one lab should be able to consistently stratify a different set of samples in another lab. 
We present a method for assessing such stability and apply it to the breast cancer (BCA) datasets of Sorlie et al. 2003 and 
Ma et al. 2003. We fi nd that within the now commonly accepted BCA categories identifi ed by Sorlie et al. Luminal A and 
Basal are robust, but Luminal B and ERBB2+ are not. In particular, 36% of the samples identifi ed as Luminal B and 55% 
identifi ed as ERBB2+ cannot be assigned an accurate category because the classifi cation is sensitive to data perturbation. 
We identify a “core cluster” of samples for each category, and from these we determine “patterns” of gene expression that 
distinguish the core clusters from each other. We fi nd that the best markers for Luminal A and Basal are (ESR1, LIV1, 
GATA-3) and (CCNE1, LAD1, KRT5), respectively. Pathways enriched in the patterns regulate apoptosis, tissue remodel-
ing and the immune response. We use a different dataset (Ma et al. 2003) to test the accuracy with which samples can be 
allocated to the four disease subtypes. We fi nd, as expected, that the classifi cation of samples identifi ed as Luminal A and 
Basal is robust but classifi cation into the other two subtypes is not. 
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Introduction
Breast cancer (BCA) is a common and heterogeneous disease affecting women of all ages. Its occur-
rence is correlated with levels of estrogen (ER), progesterone (PR) and Her2neu (ERBB2) (Gruvberger 
et al. 2001; Lacroix and Leclercq 2005). Clinically, BCA is classifi ed into two major subtypes: ER+ 
and ER-. These groups are sometimes stratifi ed further by ERBB2 and/or PR levels. Across all treat-
ments, ER+ and/or PR+ patients have a better prognosis than ER- and/or PR- tumors (Anim et al. 2005) 
and are also more likely to respond to hormone therapy (e.g. tamoxifen). Over-expression of ERBB2, 
seen in 25–30% of cases, is often a marker of aggressive disease, poor prognosis and mixed treatment 
results (Diermeier et al. 2005).

In spite of sustained research and medical and pharmaceutical effort, the incidence and death rate of 
BCA remains high. In 2005, more than 1.2 million new cases were diagnosed world wide and more than 
20% of these will die from the disease (http://imaginis.com/breasthealth/). A major cause of treatment 
failure is that tumors with similar histopathology have divergent clinical courses and prognoses. The 
goal of the present study is the same as that of many others (Bieche et al. 1995; West et al. 2001; van’t 
Veer et al. 2002; Honig et al. 2004; Ahnstrom et al. 2005;  Sharma et al. 2005; Osipo et al. 2005), that 
molecular profi ling of BCA will clarify molecular correlates of disease, and this in turn will improve 
choice of therapy, and provide leads to new and more effective therapeutics. 

In a series of papers on analysis of cDNA data of BCA tissue samples (Sorlie et al. 2001; Perou 
et al. 2000, 2001) the samples were uniquely assigned to one of four distinct categories: Luminal A, 
Luminal B, ERBB2+ (or Her2+) and Basal-like. These subtypes were later validated by Sotiriou et al. 
2003, Loi et al. 2005 and Kristensen et al. 2005. The fi rst two categories were mostly ER+ and the latter 
two mostly ER– negative. In the original analysis of Perou et al. 2000, Basal tumors were characterized 
by high levels of keratins 5 and 17, laminin, and fatty acid binding protein 7 genes (see also Charafe-
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Jauffret et al. 2005), whereas ERBB2+ was char-
acterized by high levels of several genes in the 
ERBB2 amplicon at 17q12.21 including ERBB2 
and GRB7. Other studies identified different 
markers (Abd El-Rehim et al. 2005; Bertucci et al. 
2005; Farmer et al. 2005; Hu et al. 2006; Sorlie 
et al. 2006) and a consensus set of markers for all 
BCA patients is not currently available. 

Luminal and Basal-like tumors arise in distinct 
breast tissue cell types (Perou et al. 2000) and 
have very different disease course (Sorlie et al. 
2001, 2003) and response to therapeutics (Troester
et al. 2004; Bertucci et al. 2005). The Luminal A 
subtype has the best overall prognosis followed by 
Luminal B while the other two subtypes are more 
aggressive and diffi cult to treat. The nomencla-
ture of these subtypes has found its way into the 
language and culture of clinical practice and affects 
treatment options offered to patients. This makes 
it important to validate the stability of the original 
classifi cation of Sorlie et al. This is the main goal 
of the present paper.

The original analysis used simple hierarchical 
clustering (Eisen et al. 1998) which is known to be 
sensitive to data perturbation (Monti et al. 2003; 
van der Kloot et al. 2005). We re-analyzed the 
data using a robust averaging procedure to access 
the stability of imposing fi ve clusters (4 disease 
subtypes + Normal) on the data. The goal was to 
identify a “core” set of samples in each subtype 
which were stable under data perturbations, and 
to use these cores to determine “patterns” of gene 
expression for each core. We found stable core 
clusters for samples in the Luminal A, Basal and 
Normal clusters of the original analysis. However, 
the “Luminal B” and “ERBB2+” clusters of
Sorlie et al. were unstable, with only a subset of the 
samples from the previous assignment remaining in 
stable core clusters under data perturbation. Instead, 
the originally assigned samples scattered over two 
or more clusters. This suggests that the Luminal 
B and ERBB2+ clusters (and their markers) as 
identifi ed in Sorlie et al. 2003, are unstable to data 
perturbation and need further analysis. 

For the Luminal A and Basal categories, we fi nd 
a robust set of gene markers and patterns. If we 
combine the Sorlie et al. dataset with a new dataset 
from Ma et al. and cluster the combined data using 
these robust gene markers and patterns, then in the 
new data, we can assign a robust subtype label 
for Luminal A and Basal but not for the other two 
disease phenotypes. 

Materials and Methods 

Datasets
Data 1: The cDNA dataset of (Sorlie et al. 2003) 
was obtained from http://genome-www.stanford.
edu/breast_cancer/robustness/data/SupplText.
html. The data had expression levels of N = 552 
genes for M = 122 samples of which 112 were 
from BCA patients and 10 controls. The 552 genes 
were selected by Sorlie et al. to have small varia-
tion in tissue samples from the same patient and 
a high variation in tissue samples from different 
patients.
Data 2: The Ma et al. dataset was downloaded 
from www.geneexpression_ma.org. It consisted 
of expression levels of 1940 genes for 93 samples 
micro-dissected from 36 BCA patients and 3 
normals. The samples were from three stages 
of disease: atypical ductal hyperplasia or ADH, 
ductal carcinoma in situ or DCIS and invasive 
ductal carcinoma or IDC respectively. The genes 
made available in the data were chosen by linear 
discriminant analysis as markers for breast cancer 
progression. ER, PR and HER2neu levels measured 
through immunohistochemistry were available. 

Preprocessing and Imputation 
for Data 1 
The matrix of samples (columns) and genes (rows) 
was normalized to mean 0 and variance 1 fi rst 
across columns and then across rows, ignoring 
missing entries. The matrix had 5,027 missing 
entries. We fi rst eliminated genes and samples with 
more than 20% missing entries. This reduced the 
data to N = 530 genes and M = 118 samples. We 
imputed the missing entries using a simple gener-
alization of the kNN method of Troyanskaya et al. 
2001 as follows:

We identifi ed the k nearest neighbor entries for 
missing entry xi j using the Euclidean metric,
  

   ( , ) ( ( ) )d i i x x /
ij i j

j

2
1 2= -l l!    

with the requirement that the genes chosen as 
nearest neighbors have at least t% fi lled entries. 
Twenty imputations were done at each xi j using 
the range 10 ≤ k ≤ 14 for k and varying t from 50% 
to 80% in increments of 10. Let {x1, x2, …, xk} be 
the k-nearest neighbor entries in increasing order 
of distance and R be a uniform random number in 
(0,1). Then the imputed value 
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Twenty datasets were generated in this way, one 
for each (k,t) value. The clustering was averaged 
over these twenty datasets in order to create a set 
of clusters insensitive to parameter choice in data 
imputation. This averaging is an improvement over 
the kNN method because it is stable to both varia-
tion in k and variation in how the neighbors are 
chosen (as measured by t). Multiple clones in the 
data were eliminated by averaging after discarding 
outliers outside a 95% confi dence interval. This 
process left 523 genes with no missing entries or 
clones. The fi nal data is given in Supplementary 
Table 1.

Results 

Identifying “Core” Clusters
We use the letters A, B, C, D, E to denote the fi ve 
phenotypes: Luminal A, Luminal B, ERBB2+, 
Basal, and Normal respectively. The clusters were 
identifi ed using the consensus hierarchical clus-
tering technique of Monti et al. 2003 implemented 
in GenePattern (http://www.broad.mit.edu/cancer/
software/genepattern/). This method assesses the 
stability of hierarchical clustering across multiple 
perturbations of the data. We generated 100 copies 
of the dataset by randomly selecting 80% of the 
samples. Each copy was hierarchically clustered 
using a Euclidean distance metric and the top 5 
clusters were selected. For each distinct sample 
pair (i, j) in the data, we computed the frequency 
Fij with which the pair clustered together over the 
100 copies of the datasets. The matrix of Fij values 
is called the “agreement matrix.” Repeating this for 
all 20 data imputations and averaging gave the fi nal 
“consensus agreement matrix” which is shown in 
Supplementary Table 2. 

The five core clusters were identified as 
bicliques (Alexe et al. 2004) using the agreement 
matrix entries as a measure of similarity. We used 
the criterion that two samples have the same pheno-
type and belong to the same core cluster if they 

have a consensus agreement matrix score greater 
than P. For the Luminal A and Basal subtypes, the 
value P = 90% was suffi cient to get an exact match 
between the core cluster identifi ed by us and the 
assignment in Perou et al. 2000 and Sorlie et al. 
2003. However, for samples assigned to Luminal B 
and ERBB2+ by the earlier study, these thresholds 
needed to be lowered to 50% and 25% respectively 
to get agreement with the previous assignments, 
suggesting that these categories are considerably 
less stable to data perturbation. The fi ve core clus-
ters contained 60 out of the 118 samples.

From the Fij values, we defi ne the average agree-
ment score between a sample i and other samples 
j in a given cluster C as

     
 F n

F

,i C

ij

j

n

1
= =

!
 , 

where j  =  1, ... , n, and n is the number of samples 
in the cluster C. Fi,C was calculated for each 
of the fi ve clusters. The results are shown in 
Figures 1 a–e. For each phenotype, we used a 
cutoff criterion on Fi,C to assign it to the corre-
sponding core cluster and these samples are 
shown in color. Many samples earlier identifi ed 
as Luminal B also have a high score in our Basal 
core cluster (Figure 1b and 1d). This suggests 
that the Luminal B identifi cation is problematic. 
Figure 1e also shows that some samples identifi ed 
earlier as Luminal A are placed in our “Normal” 
core cluster, suggesting that these patients may 
have minimal disease. Overall, our analysis shows 
that Luminal A, Basal and Normal phenotypes 
are robustly classifi able into homogeneous clus-
ters but Luminal B and ERBB2+ do not cluster 
well. We fi nd that 36% of the samples previously 
placed in the Luminal B category and 55% of 
samples previously classifi ed as ERBB2+ are in 
fact ambiguous; i.e., their assignments are highly 
sensitive to data perturbation and they should be 
reanalyzed or classifi ed as ambiguous. The scores 
of some unclassifi ed samples in Sorlie et al. 2003 
are shown in Figure 1f. For the samples where 
these scores are higher than the cutoff in one core 
cluster but not in any other, the corresponding 
sample can be assigned a category label by our 
clustering. 

Table 1 compares the original assignments of 
Sorlie et al. with our core clusters of Figure 1 and 
shows the sample id’s from the original study. 
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The agreement fraction between the original 
assignment and our assignments is highest for the 
Normal, Luminal A and Basal categories and lower 
in the other two phenotypes. 

For each sample i in a core cluster, we also 
calculated the silhouette score (Rousseeuw,1987) 
defi ned by 

 s(i) = ( )
( ( ), ( )

( ) ( )
max

s i
a i b i

b i a i
=

-  , 

where a(i) is the average dissimilarity between i 
and all other samples in the cluster, and b(i) is the 
minimum average dissimilarity of i to all samples 
in other clusters. If s(i) values in a cluster are close 
to unity, the cluster is well defi ned. An s(i) value 
near zero indicates that the sample is between 
two clusters. Negative values of s(i) mean that 
the sample is in the wrong cluster. The “silhou-
ette width” of a cluster is the average of the s(i) 
scores of all samples in that cluster. The silhouette 
widths for our core clusters as well as for the Sorlie 
et al. clusters are given in Table 1. The low values 
of the average silhouette scores are worrisome. 
They suggest either that the stratifi cation into these 
phenotypes is problematic or that a better choices 
of genes is necessary to separate the phenotypes 
more reliably.

Identifying Robust Gene Markers 
Microarray datasets suffer from an overabundance 
of genes, most of which do not contribute to the 
signal. Identifying differentially expressed genes 
for a given set of phenotypes is a diffi cult problem 
for which many methods have been proposed. 
These can be divided into two major groups 
(Guyon and Ellisseeff, 2003, Inza et al. 2004, 
Lai et al. 2006, Jeffery et al. 2006) for supervised 
learning:

(i) Filtering or Variable Ranking methods: 
These select features based on quality scores. They 
include the fold change test (e.g. Mutch et al. 2002; 
Breitling and Herzyk, 2005), the t-test (Gossett, 
1908, Tusher et al. 2001), the Wilcoxon-Mann-
Whitney test (Bradley, 1968; Lehman, 1975), 
the Signal-to-Noise Ratio (SNR) test (Golub 
et al. 1999), the J5 test (Patel and Lyons-Weiler, 
2004), the D1 test (Patel and Lyons-Weiler, 2004) 
etc. Another set of methods measure the "sepa-
rability" of data into different phenotype classes. 
These include simple separability (Patel and Ta
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Lyons-Weiler, 2004), weighted separability (Patel 
and Lyons-Weiler, 2004), envelope eccentricity 
(Alexe et al. 2006), separation measure (Alexe 
et al. 2006b) etc. A third class uses information-
theoretic methods such as the entropy criterion 
(e.g. Furlanello et al. 2003; Liu et al. 2005), mutual 
information (e.g. Tourassi et al. 2001), information 
gain (Liu, 2004) etc. Finally, there are the statistical 
impurity measures (Su et al. 2003) which include 
the two-ing rule, the Gini index, max-minority, 
sum-minority, sum-of-variances etc.

(ii) Feature Subset Selection Methods: One such 
method selects those features which are useful for 
classifi cation for a given machine learning algo-
rithm (e.g. SVM (Vapnik, 1998), ANN (Bishop, 
1995), kNN (Ripley, 1996) etc). More sophisti-
cated approaches are embedded methods which 
include the selection of features as part of the 
training process for the classifi er. These methods 
are computationally intensive and require effi cient 
search strategies or a preliminary fi ltering of the 
non-reliable genes to reduce the dimensionality of 
the problem.

The existence of such a variety of feature selec-
tion methods poses a challenge in microarray 
data analysis. There have been recent attempts to 
combine various approaches into a meta selec-
tion procedure based on "majority-voting" using 
ranking by predictive content across many data 
perturbations and machine learning methods (e.g. 
Bhanot et al. 2005; Alexe et al. 2005a). Several 
studies (Guyon and Ellisseeff, 2001; Alexe et al. 
2005b) have shown that variables which are only 
weakly correlated with phenotype are very useful 
when used in combinations. This principle has lead 
to the development and study of combinatorial 
markers or patterns (Crama et al. 1988; Bhanot 
et al. 2005; Alexe et al. 2006b).

In the present study, we have chosen to use a 
single feature selection method (namely the SNR 
test, Golub et al. 1999) which has been shown 
(Alexe et al. 2006b) to have good performance on 
genomic and proteomic data. However, we cannot 
guarantee that it is the best method, particularly 
because of the need to impute the missing data in 
the dataset of Sorlie et al. As an added check on 
the feature selection, we also use the combinatorial 
“pattern” method and averaging over data pertur-
bations to reduce the errors from potentially “less 
than optimum” choice of features. 

We identifi ed a large pool of uni-gene markers 
for each core that distinguish it from the others 

using the signal-to-noise statistic. For gene i, if 
µ1(i) and µ2(i) be the average gene expression 
levels for the core and its complement and σ1(i) 
and σ2(i) the corresponding standard deviations, 
the signal-to-noise ratio (SNR) is defi ned as SNR = 
(µ0 – µ1)/(σ0 + σ1). The t-test statistic is the 
same as the SNR except that the denominator is 
(σ0

2 + σ1
2)1/2. Since (σ0 + σ1) > (σ0

2 + σ1
2)1/2 SNR 

is a more conservative criterion than the t-test. 
The SNR statistic is preferred over the t-test in 

situations when the sample size in a class is small 
(less than 30) because it does not assume a Gaussian 
distribution for the underlying variables; an assump-
tion which is implicit in the t-test. When combined 
with a permutation test for measuring p-values, the 
SNR statistic is a powerful and widely used tech-
nique for feature selection and class discrimination 
(e.g. Golub et al. 1999; Ramaswamy et al. 2001; 
Shipp et al. 2002; Sun et al. 2004; Goh and Kasabov 
2005; Monti et al. 2005) and is implemented in 
several software packages (e.g. GenePattern and 
Gene Set Enrichment Analysis (GSEA), http://
www.broad.mit.edu/tools/software.html). 

The signal-to-noise (SNR) was computed for 
each gene for each of the 20 imputed datasets and 
for each of the 60 leave-one-out sample perturba-
tion experiments for the core samples. The selected 
genes were those whose p-value for the SNR was 
below 0.01 and the signifi cance of the SNR for false 
discovery rate (FDR) (Benjamini and Hochberg, 
1995) was above 0.95 in each experiment. 

This procedure identifi ed 391 robust uni-gene 
markers (given in Supplementary Table 3) for the 
fi ve core clusters. They consisted of overlapping sets 
of genes, 238 for Luminal A, 234 for Basal, 66 genes 
for Luminal B, 35 genes for ERBB2+ and 118 genes 
for Normals. These included many genes identifi ed 
in previous studies (Perou et al. 2000; Sorlie et al. 
2003; Loi et al. 2005). For example, the Luminal 
A set included the known estrogen pathway genes 
(ESR1, LIV1, GATA-3) and the Basal set the known 
genes CCNE1, LAD1, and KRT5.

We further reduced this pool to 148 genes using 
the more stringent criteria which used the signifi -
cance of the SNR for several metrics: the false 
discovery rate, the Q value (Storey and Tibshirani, 
2003), FWER (Dudoit et al. 2002), Bonferroni
correction (Bonferroni, 1935). More details about 
the multiple testing metrics we used are given in 
Supplementary Information I. These 148 genes 
included 79 genes for Luminal A and 60 for Basal 
with an overlap of 31 genes. The other phenotypes 
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Table 2a. Collection of uni-gene markers for the Luminal A phenotype. The markers are sorted in decreasing 
order with respect to to the signal-to-noise ratio.
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00.071.1 969154AA 1 ekil-)IIS( A rotcaf noitagnole noitpircsnart 1LAECT614
00.090.1 93647T ahpla ,3 rotcaf raelcun etycotapeh A3FNH434

436 FLT1 fms-related tyrosine kinase 1 (vascular endothelial growth factor/vascular permeability 
factor receptor) AA058828 1.04 0.00

421  Homo sapiens mRNA; cDNA DKFZp313L231 (from clone DKFZp313L231) AA029948 0.95 0.00
00.059.0 724996AA 1 esatahpsohpsib-6,1-esotcurf 1PBF444
00.019.0 723405AA 2 rebmem ,AVI epyt esatahpsohp enisoryt nietorp 2A4PTP044

439 RAB5EP rabaptin-5 AA428477 0.90 0.00
00.078.0 047454AA nietorp 9320AAIK 9320AAIK554
00.038.0 763724AA )nietorp gnitcaretni 2LCB ekil-nisoym ,lioc-delioc( 1 nilceb 1NCEB873
00.018.0 31627T nietorp 5201AAIK 5201AAIK844
00.018.0 91632R 17172CGM nietorp lacitehtopyh 17172CGM544
00.008.0 82109W 1 nietorp gnidnib xob-X 1PBX534
00.097.0 49842R evitisnes nicymorup esaditpeponima SPPEPN354
00.097.0 08159N nietorp 120DA** 31315COL524

454 HIS1 HMBA-inducible N21081 0.78 0.00
00.087.0 419784AA 4 esanegordyhed )ateb-71( dioretsyxordyh 4B71DSH644

495 CYB5 cytochrome b-5 R91950 0.78 0.00
00.087.0 76454N 08901JLF nietorp lacitehtopyh 08901JLF924

442 CEGP1 CEGP1 protein W74079 0.77 0.00
00.067.0 29759H niahc dehcnarb/trohs ,esanegordyhed A emyzneoC-lyca BSDACA344
00.067.0 10036N )330E434pZFKD enolc morf( 330E434pZFKD ANDc ;ANRm sneipas omoH 624
00.057.0 47437W 2 esarefsnart-S enoihtatulg lamosorcim 2TSGM194
00.047.0 894364AA 1 nietorp gnidnib )A97DC( nilubolgonummi 1PBGI083
00.037.0 40033R modylop esuom fo golohtro ylekil MODYLOP814
00.037.0 85531R elucelom noisehda llec etycokuel detavitca MACLA694
00.017.0 551466AA 1 )esadimarec dica( esalordyhodima enisognihpslyca-N 1HASA414
00.017.0 67227N 1 rotcaf gnidnib AND rotpecer diocitrococulg 1FLRG993

402 BF B-factor, properdin H80257 0.70 0.00
00.096.0 571710AA 1 esanegordyhed etamatulg 1DULG93
00.096.0 127134AA nietorp 6780AAIK 6780AAIK824
00.096.0 104724AA 03711JLF nietorp lacitehtopyh 03711JLF893

493 D5S346 DNA segment, single copy probe LNS-CAI/LNS-CAII (deleted in polyposis) H99681 0.68 0.00
00.076.0 10025H 5 esanegyxoonom gniniatnoc nivalf 5OMF304
00.076.0 465814AA 4073002URETU enolc ,sif 10904JLF ANDc sneipas omoH 114
00.076.0 737750AA )alihposorD ,golomoh )1ps(E( 3 tilps fo recnahne ekil-nicudsnart 3ELT034
00.066.0 13147N sdc etelpmoc ,ANRm ,6656964:EGAMI 88522:CGM enolc ,sneipas omoH 334
00.056.0 604466AA B4 tnenopmoc tnemelpmoc B4C494
00.056.0 89183R esatcuder enidiretpordyhid dioniuq RPDQ173
00.056.0- 84006T ciretne ,elcsum htooms ,2 ammag ,nitca 2GTCA262

256  ESTs AA074677 -0.66 0.00
00.086.0- 89702N golomoh enegocno lariv amocras enilef 4 namrekcuZ-ydraH tik-v TIK96
00.086.0- 580684AA 01 ateb ,nisomyht 01BSMT112
00.096.0- 84708H 79601JLF nietorp lacitehtopyh 79601JLF832
00.007.0- 291620AA )esanietorpokuelitna( rotibihni esaetorp etycokuel yroterces IPLS342
00.007.0- 24633R ip esarefsnart-S enoihtatulg 1PTSG081

254  Homo sapiens cDNA FLJ11796 fis, clone HEMBA1006158, highly similar to Homo sapiens 
transcription factor forkhead-like 7 (FKHL7) gene N22552 -0.71 0.00

186 NRG1 neuregulin 1 R72075 -0.72 0.00
00.037.0- 90109N 87622JLF nietorp lacitehtopyh** 87622JLF162

244 TONDU TONDU AA700322 -0.74 0.00
00.067.0- 67787R K ,epyt rotpecer ,esatahpsohp enisoryt nietorp KRPTP232
00.067.0- 584550AA 92 gniniatnoc-fitom etitrapirt 92MIRT842
00.077.0- 987354AA 7 esanik enisoryt nietorp 7KTP** 7KTP581
00.077.0- 207454AA 1 nietorp gnidnib dica cioniter ralullec 1PBARC771

241 CXCL1 chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha) W42723 -0.77 0.00
00.077.0- 02139W 2033003PR2TN enolc ,sif 16741JLF ANDc sneipas omoH 042
00.077.0- 650466AA esaditpepodne lylorp PERP781
00.087.0- 820464AA 52541JLF nietorp lacitehtopyh 52541JLF752
00.018.0- 16797N 2 nietorp gnitcaretni-tinubus citylatac esanik nietorp tnedneped-AND 2PIK432
00.028.0- 69425N 3 rebmem ,ylimaf GTB 3GTB991
00.028.0- 143354AA nietorp xileh-pool-xileh evitagen tnanimod ,4 gnidnib AND fo rotibihni 4DI79
00.048.0- 522101AA ip ,rotpecer A )ABAG( dica cirytubonima-ammag PRBAG542

259 SLC5A6 solute carrier family 5 (sodium-dependent vitamin transporter), member 6 AA186605 -0.84 0.00
00.058.0- 003554AA A nietorp niamod kcohs dloc ADSC86
00.068.0- 712524AA )latnecalp( nirehdac-P ,1 epyt ,3 nirehdac 3HDC242

258 B3GNT5 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5 AA043551 -0.86 0.00
222 LAD1 ladinin 1 T97710 -0.87 0.00

00.078.0- 78485N nietorp 1961AAIK 1961AAIK312
00.088.0- 312430AA 3 nietorp enarbmem largetni 3MTI69
00.009.0- 571995AA 1 nietorp gnidnib tnemele evitisnes esaelcun 1PESN402
00.039.0- 357450AA nietorp 8 rotcaf FGE-elubolg taf klim 8EGFM052

183 PLOD procollagen-lysine, 2-oxoglutarate 5-dioxygenase (lysine hydroxylase, Ehlers-Danlos 
syndrome type VI) AA476240 -0.96 0.00

00.080.1- 149844AA 5 gniniatnoc niamod CHHD ,regnif cniz** 5CHHDZ152
00.001.1- 96471R 24421JLF nietorp lacitehtopyh 24421JLF012
00.081.1- 93166R 1 dnagil )fitom C-3X-C( enikomehc 1LC3XC252
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Table 2b. Collection of uni-gene markers for the Luminal B phenotype. The markers are sorted in
decreasing order with respect to to the signal-to-noise ratio.
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Gene Description 
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cc
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R

FD
R

192 SDHA succinate dehydrogenase complex, subunit A, flavoprotein (Fp) T70043 1.14 0.00
00.001.1 79864T 1 elucelom gnitaluger noisehda 1MRDA831
00.070.1 81110R esadixope enelauqs ELQS912

205 GGH gamma-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase) AA455800 1.03 0.00
00.088.0 412006AA retropsnart enarbmem largetni evitatup 72CL602
00.048.0 10894T 7742CGM nietorp lacitehtopyh 7742CGM731

195 MDS029 uncharacterized hematopoietic stem/progenitor cells protein MDS029 AA431199 0.82 0.00
00.008.0 02626N 1 rebmem ,K ylimafbus ,lennahc muissatop 1KNCK082

426  Homo sapiens mRNA; cDNA DKFZp434E033 (from clone DKFZp434E033) N63001 -0.82 0.00
00.038.0- 97047W nietorp 1PGEC 1PGEC244
00.038.0- 25117T 84901JLF nietorp lacitehtopyh 84901JLF774
00.088.0- 04759R 3 esanoxoarap 3NOP153
00.088.0- 435776AA 2 ammag ,ninimal 2CMAL662
00.098.0- 90366R esanegyxoonom gnitadima-ahpla enicylglyditpep MAP423
00.039.0- 83798N 0953102YMARB enolc ,sif 48273JLF ANDc sneipas omoH 233
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Table 2c. Collection of uni-gene markers for the ERBB2+ phenotype. The markers are sorted in 
decreasing order with respect to to the signal-to-noise ratio.
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7 ERBB2 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, 
neuro/glioblastoma derived oncogene homolog (avian) AA480116 2.27 0.00

9 **Homo sapiens mRNA; cDNA DKFZp761B0319 (from clone 
DKFZp761B0319) AA504615 1.84 0.00

00.085.1 100844AA 1 ekil-PBT 1LPBT01
5 TRAP100 thyroid hormone receptor-associated protein (100 kDa) N54470 1.43 0.00

00.093.1 78485N nietorp 1961AAIK 1961AAIK312
00.012.1 20735H 7 nietorp dnuob-rotpecer rotcaf htworg 7BRG8

235 KIAA1971 **similar to junction-mediating and regulatory protein p300 JMY N71692 1.12 0.00
00.080.1 237730AA esadixo lysyl XOL403
00.020.1 356895AA )ekil-I nilcicsaf( 2 rotcaf cificeps tsalboetso 2-FSO603
00.010.1- 832684AA )872 nietorp gnidnib nitca( ateb ,B nimalif BNLF584

270 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) H67202 -1.06 0.00
00.060.1- 322010AA Q rebmem ,ylimaf enotsih B2H QFB2H401

300 CDC42EP4 CDC42 effector protein (Rho GTPase binding) 4 W32509 -1.08 0.00
00.011.1- 20981R 90501JLF nietorp lacitehtopyh 90501JLF111
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Table 2d. Collection of uni-gene markers for the Basal phenotype. The markers are 
sorted in decreasing order with respect to to the signal-to-noise ratio.
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258 B3GNT5 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5 AA043551 1.10 0.00

254  Homo sapiens cDNA FLJ11796 fis, clone HEMBA1006158, highly similar to Homo 
sapiens transcription factor forkhead-like 7 (FKHL7) gene N22552 1.07 0.00

256  ESTs AA074677 1.03 0.00

183 PLOD procollagen-lysine, 2-oxoglutarate 5-dioxygenase (lysine hydroxylase, Ehlers-
Danlos syndrome type VI) AA476240 0.92 0.00

257 FLJ14525 hypothetical protein FLJ14525 AA464028 0.85 0.00
255 CHI3L2 chitinase 3-like 2 AA668821 0.85 0.00
175 SIAT4C sialyltransferase 4C (beta-galactosidase alpha-2,3-sialytransferase) AA453813 0.84 0.00
215 CCNE1 cyclin E1 T54121 0.84 0.00
172 STK38 serine/threonine kinase 38 AA521346 0.84 0.00
199 BTG3 BTG family, member 3 N52496 0.84 0.00
273 DGUOK deoxyguanosine kinase R07506 0.83 0.00
228 TP53BP2 tumor protein p53 binding protein, 2 H69077 0.81 0.00
204 NSEP1 nuclease sensitive element binding protein 1 AA599175 0.79 0.00
238 FLJ10697 hypothetical protein FLJ10697 H80748 0.76 0.00
272 PRAME preferentially expressed antigen in melanoma AA598817 0.76 0.00
243 SLPI secretory leukocyte protease inhibitor (antileukoproteinase) AA026192 0.75 0.00
268 CP ceruloplasmin (ferroxidase) H86554 0.75 0.00
259 SLC5A6 solute carrier family 5 (sodium-dependent vitamin transporter), member 6 AA186605 0.72 0.00
231 CDK2AP1 CDK2-associated protein 1 R78607 0.72 0.00
224 MAFG v-maf musculoaponeurotic fibrosarcoma oncogene homolog G (avian) AA045436 0.71 0.00
269 RCL putative c-Myc-responsive AA132086 0.70 0.00
226 TMSNB thymosin, beta, identified in neuroblastoma cells N91887 0.70 0.00
217 LANP-L lecuine-rich acidic protein-like protein AA130595 0.70 0.00
245 GABRP gamma-aminobutyric acid (GABA) A receptor, pi AA101225 0.69 0.00
233 S100A11 S100 calcium binding protein A11 (calgizzarin) AA464731 0.68 0.00
185 PTK7 **PTK7 protein tyrosine kinase 7 AA453789 0.68 0.00
173 DKFZP434L0718 hypothetical protein DKFZp434L0718 AA437140 0.67 0.00
239  Homo sapiens cDNA FLJ31360 fis, clone MESAN2000572 AA031989 0.67 0.00
222 LAD1 ladinin 1 T97710 0.66 0.00
506 CRAT carnitine acetyltransferase AA621218 -0.65 0.00
394 RGS5 regulator of G-protein signalling 5 AA668470 -0.66 0.00
428 KIAA0876 KIAA0876 protein AA431721 -0.66 0.00
431 NAT1 N-acetyltransferase 1 (arylamine N-acetyltransferase) T67128 -0.66 0.00
443 ACADSB acyl-Coenzyme A dehydrogenase, short/branched chain H95792 -0.67 0.00
458 FMOD fibromodulin AA485748 -0.68 0.00
442 CEGP1 CEGP1 protein W74079 -0.70 0.00
454 HIS1 HMBA-inducible N21081 -0.70 0.00
498  ESTs N73949 -0.70 0.00
488 ECE1 endothelin converting enzyme 1 H18427 -0.71 0.00
457 RNASE4 ribonuclease, RNase A family, 4 T60163 -0.71 0.00
452 PLAT plasminogen activator, tissue AA447797 -0.73 0.00
421  Homo sapiens mRNA; cDNA DKFZp313L231 (from clone DKFZp313L231) AA029948 -0.76 0.00
346 HRASLS3 HRAS-like suppressor 3 AA476438 -0.77 0.00
425 LOC51313 **AD021 protein N95180 -0.78 0.00
501 MRPS14 **mitochondrial ribosomal protein S14 T51290 -0.79 0.00
387 PRO1489 hypothetical protein PRO1489 AA131299 -0.80 0.00

500 SLC11A3 solute carrier family 11 (proton-coupled divalent metal ion transporters), 
member 3 AA056733 -0.80 0.00

495 CYB5 cytochrome b-5 R91950 -0.82 0.00
429 FLJ10980 hypothetical protein FLJ10980 N45467 -0.83 0.00
444 FBP1 fructose-1,6-bisphosphatase 1 AA699427 -0.83 0.00
440 PTP4A2 protein tyrosine phosphatase type IVA, member 2 AA504327 -0.85 0.00
439 RAB5EP rabaptin-5 AA428477 -0.88 0.00

436 FLT1 fms-related tyrosine kinase 1 (vascular endothelial growth factor/vascular 
permeability factor receptor) AA058828 -0.91 0.00

502 DKFZp586H0623 putative UDP-GalNAc:polypeptide N-
acetylgalactosaminyltransferase T9 T51229 -0.94 0.00

447  **Homo sapiens cDNA FLJ11796 fis, clone HEMBA1006158, highly similar to Homo 
sapiens transcription factor forkhead-like 7 (FKHL7) gene AA495790 -1.11 0.00

445 MGC27171 hypothetical protein MGC27171 R23619 -1.14 0.00
434 HNF3A hepatocyte nuclear factor 3, alpha T74639 -1.18 0.00
435 XBP1 X-box binding protein 1 W90128 -1.20 0.00
437 GATA3 GATA binding protein 3 H72474 -1.27 0.00
433  Homo sapiens, clone MGC:22588 IMAGE:4696566, mRNA, complete cds N74131 -1.46 0.00
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(Luminal B, ERBB2+ and Normal) had far fewer 
gene markers (15 for Luminal B, 14 for ERBB2+ 
and 20 for Normal core clusters). These genes are 
listed in Tables 2 a–d and those also identifi ed in 
Sorlie et al. (2003) are marked with a*. A heat 
map of the core clusters using these 148 genes is 
shown in Figure 2. 

Patterns (Multi-gene Markers)
for the Core Clusters 
The complexity of BCA makes it unlikely that single 
genes can predict phenotype. Instead, one expects 
combinations of genes to be better at identifying 
phenotype. Consequently, we used “ patterns” (as 
defi ned in Crama et al. 1988; Alexe and Hammer, 
2005; Bhanot et al. 2005) to distinguish the core 
clusters. A pattern is a set of linear constraints on 
the expression levels of a group of genes satisfi ed 
by many samples in a particular cluster and by few 
samples in other clusters. For example, the pattern PA 
below is satisfi ed by all samples in the “Luminal A” 
cluster and by none of the non-Luminal A samples:

PA = [Expression of GATA3 ≥ 0.49 ].AND.
          [Expression of Liv-1 ≥ – 0.25]

For illustration, Figure 3 shows two patterns PA 
and NA, in the 2-d expression plane for GATA3 
and Liv-1. 

A pattern is characterized by its degree, preva-
lence, and homogeneity. The degree is the number 
of genes appearing in its defi ning conditions. The 
prevalence of a pattern is the percent of positive 
(negative) cases which satisfy the pattern. The 
homogeneity of a pattern is the percentage of 
positive (negative) cases covered by it. In general, 
patterns useful for classifi cation have low degree 
and high prevalence and homogeneity. 

We identified all patterns for the 60 core 
samples over the selected 148 genes by applying 
the combinatorial algorithm described in (Alexe 
and Hammer, 2005). Briefl y, each sample from a 
core cluster was placed in a box by defi ning cuts 
in gene expression space which distinguish it from 
the samples belonging to other core clusters. The 
boxes were then merged by extending them along 

Table 2e. Collection of uni-gene markers for the Normal phenotype. The markers are sorted in decreasing 
order with respect to to the signal-to-noise ratio.
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00.083.1 93166R 1 dnagil )fitom C-3X-C( enikomehc 1LC3XC252
00.052.1 25117T 84901JLF nietorp lacitehtopyh 84901JLF774
00.081.1 72481H 1 emyzne gnitrevnoc nilehtodne 1ECE884

317 EPAC Rap1 guanine-nucleotide-exchange factor directly activated by cAMP AA453497 1.18 0.00
00.061.1 001620AA 71 nitarek 71TRK942
00.051.1 517450AA 08910ISH enolc ,sif 66522JLF :ANDc sneipas omoH 874
00.080.1 36106T 4 ,ylimaf A esaNR ,esaelcunobir 4ESANR754
00.070.1 737092AA 1M esarefsnart-S enoihtatulg 1MTSG483
00.020.1 29553N 1sllE nietorp lacitehtopyh 1sllE923
00.000.1 584550AA 92 gniniatnoc-fitom etitrapirt 92MIRT842
00.079.0 361464AA niahc gnol yrev ,esanegordyhed A emyzneoC-lyca LVDACA474
00.059.0 579654AA D nietorpopilopa DOPA715
00.069.0- 81110R esadixope enelauqs ELQS912
00.000.1- 38596W nietorp 510-DA 92855COL841
00.010.1- 805895AA   3_eman_on651
00.020.1- 11151H esalysocylg AND-licaru GNU05

91 TAP1 transporter 1, ATP-binding cassette, sub-family B (MDR/TAP) AA487429 -1.05 0.00
00.060.1- 55254R 2 nietorp gnidnib 1ANBE 2PB1ANBE302
00.081.1- 366954AA 4 nixoderixorep 4XDRP702
00.053.1- 46955W aDk61 ,5 tinubus ,xelpmoc 3/2 nietorp detaler nitca 5CPRA14

C
or

e 
E



Cancer Informatics Online 2006: 2258

Bhanot et al

Figure 2. Heatmap of 148 uni-genes for the samples in core categories.
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Figure 3. An example of a pattern (pattern PA) characteristic of the Luminal A core cluster (Cluster A)  and an example of a pattern (pattern 
NA ) characteristic of the non-Luminal A cases. Notice that P is satisfi ed by all the samples in the Luminal A group, while N is satisfi ed by 88% 
of the non-Luminal A cases. Both patterns P and N are expressed as bounding constraints on the expressions of genes Liv-1 and Gata-3.

all possible dimensions without allowing any 
member of the opposite class to be included in 
the box. The maximal boxes so obtained defi ned 
the patterns.

The pattern parameters (degree, prevalence, and 
homogeneity) were determined by estimating the 
classifi cation accuracy of a weighted-voting model 
constructed on pattern data through 10- fold cross-
validation experiments. Pattern-based weighted 
voting is a meta-classifi cation scheme in which 
individual patterns are “voters” for a phenotype. 
The performance of a multi-pattern meta-clas-
sifi cation system is better than the performance 
of single patterns if the patterns are uncorrelated 
(Merz, 1998). Uncorrelated patterns were selected 
by requiring the patterns to be defi ned on non-over-
lapping subsets of features. To avoid over-fi tting, 
the patterns were required to use no more than fi ve 
genes each. 

We found many patterns of degree 2 and 3 
for each phenotype, each of which was common 
to more than 90% of the samples in the cores. 
Table 3 presents some of these patterns. The 
striking feature of Table 3 is that simple conditions 
on a few genes are able to generate a very clean 
classifi cation in the cores. Several genes occurred 
frequently in the patterns, suggesting an active 
association with disease. For example, KIAA1691, 
PREP, CX3CL1, LIV-1, PLOD, GATA-3 occur in 
20% of patterns for Luminal A, while PRAME, 
PLAT, CCNE1, FKHL7, clone MGC:22588 
IMAGE:4696566, occur in 15% of the patterns 
for the Basal group. There are also several genes 

which are good uni-gene markers but are not found 
in patterns.

Consistency of Core Assignments 
Using Either Patterns or Clustering 
A positive pattern is a set of conditions satisfi ed 
by a sample that belongs to a core cluster. A nega-
tive pattern is a set of conditions satisfi ed by a 
sample that belongs to the complement of the core 
cluster. For each unlabeled sample we counted the 
number of positive minus the number of negative 
patterns satisfi ed by it for each core cluster. The 
sample was assigned to the core cluster for which 
the ratio obtained by dividing this number to the 
total number of patterns for the core cluster, was 
positive and maximum. If the maximum ratio was 
negative or if it was assigned to multiple core clus-
ters then the sample remained unclassifi ed (Alexe 
et al. 2005c). The classifi cation of samples to cores 
was validated using leave-one-out experiments on 
patterns. Over the sixty samples in the cores, in 
each such experiment, the entire procedure (gene 
selection, pattern extraction and sample classifi -
cation) was repeated sixty times, once for each 
omitted sample.

A comparison of our clustering and pattern 
assignments with the original classification is 
presented in Table 4. The color scheme is that if 
the sample is robustly assigned to a phenotype, 
its entry is the color of that phenotype. Samples 
whose classifi cation is either poor or ambiguous 
are in black or left blank respectively. When the 
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Table 4. Phenotype classifi cation of breast cancer based on core 
clusters and pattern scores.
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Table 5. Phenotype prediction for previously unassigned breast cancer samples. 
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Table 6. Classifi cation accuracy of pattern models through leave-one-out 
cross validation experiments.

pattern and cluster classifi ers agree, the assignment 
can be considered accurate. When they differ, no 
classifi cation is possible. From a treatment perspec-
tive, the recommendation of such an inconclusive 
assignment would be retesting. The clustering and 
patterns classifi ers for the unassigned samples in 
the Sorlie et al. paper are shown in Table 5. Some 
of these originally unassigned samples are assigned 
to a consistent phenotype by our methods. 

Table 6 summarizes the sensitivity and speci-
fi city of the pattern based classifi er showing once 
again the robustness of the classification into 
phenotypes Normal, Luminal A and Basal and 
the unreliability of the other two phenotype clas-
sifi cations.

Validation on an External Dataset 
Data 2
We used the markers identifi ed in Data 1 to clas-
sify samples in Data 2. These two datasets had 93 
genes in common. Of these, 79 were in our 391 
uni-gene set and a subset of 38 of these were in 
the smaller subset of 148 genes. Of the latter, 23 
were markers for Luminal A, 4 were markers for 
Luminal B, 3 were markers for ERBB2+ and 12 
were markers for the Basal group. For each of the 
38 genes, we normalized the data sets relative to 
each other by equating the average intensity of 
each gene for the normal samples in the two data 
sets. In each dataset, the expression level of each 
gene was replaced with its quartile value across all 
samples. We recomputed a pattern-based classifi er 
trained on the known core clusters in the Sorlie 
et al. (2003) data and used it to predict the pheno-
type for Ma et al. 2003 samples. 

Figure 4 shows a heat map of the 38 genes in 
common between the datasets. This plot includes 

all core samples from Data 1 and all samples 
from Data 2. The Normal samples from both sets 
cluster nicely showing that the global normaliza-
tion was done correctly. The Luminal A cluster 
is easily identifi ed because all Luminal A core 
samples from Data 1 cluster together with several 
samples from Data 2. There is also a distinct Basal 
cluster with most Data 1 Basal samples and a few 
Data 2 samples on its edges. Finally, there is 
another cluster with some Core B samples which 
looks quite similar to Luminal A. The core C 
samples are mixed in with the Basal cluster (as was 
already noticed in Figure 1c). We conclude that it 
is not possible to assign Luminal B or ERBB2+ 
phenotypes to samples in Data 2 based on Data 
1 because a) There are very few genes in these 
categories (3/38 for ERBB2+ and 4/38 for Luminal 
B), b) the ERBB2 gene is missing in Data 2 and 
c) The quality of the patterns using the 38 genes 
for these two phenotypes is poor. Indeed, for core 
C, there are no patterns at all and for core B, the 
patterns are of poor statistical quality.

To further validate the consistency of our 
assignments, we trained a pattern-based classifi ca-
tion model on quartile discretized Data 1 samples 
and used it to predict the phenotype for the samples 
in Data 2 using majority voting. When the predic-
tion from patterns agreed with the prediction from 
clustering as in Figure 4, we felt confi dent of the 
diagnosis, otherwise not. Our predicted phenotypes 
for the Ma et al. data are given in Table 7. 

Pathways for each Core 
To identify processes/pathways that are common 
and particular to the different phenotypes, we 
used the bioinformatics public resources DAVID 
(Dennis et al. 2003), BioRag (Pandey et al. 2004), 
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Table 7. Predicted phenotype for samples in Ma et al. data using patterns 
from core clusters in Sorlie et al. 2003. We are confi dent of the pheno-
type assignment for those samples marked in color in columns 9 and 10. 
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detaler recnac tsaerBsrotpeceR_raelcuN 207192AA 1 rotpecer negortse 1RSE

KIT v-kit Hardy-Zuckerman 4 
feline sarcoma viral oncogene 
homolog

N20798 Regulation of BAD phosphorylation

Breast cancer related, Loss of c-kit expression 
has been reported in 80-90% of breast cancer 
specimens, suggesting a possible role in the 
development of tumors. Introduction of the c-kit 
gene leads to growth suppression of a breast 
cancer cell line, MCF-7 (Nishida et al., 1996)

NRG1 neuregulin 1 R72075 Neuroregulin receptor degredation protein-1 Controls 
ErbB3 receptor recycling

Breast cancer related, direct ligand for ERBB3 
and ERBB4. Indirect activator of ERBB2.

NSEP1 nuclease sensitive 
element binding protein 1 AA599175 D4-GDI Signaling Pathway

Breast cancer related. Target of Akt 
phosphorylation. Disruption inhibits tumor growth 
(Sutherland et al., 2005)

ID4 inhibitor of DNA binding 4, 
dominant negative helix-loop-helix 
protein

AA453341 TGF-beta signaling pathway

Cancer related. May contribute to rat mammary 
gland carcinogenesis by inhibiting mammary 
epithelial cell differentiation and stimulating 
mammary epithelial cell growth (Shan et al., 
2003). Down-regulated in gastric adenocarcinoma 
and leukemia.

GSTP1 glutathione S-transferase 
pi R33642 Multi-Drug Resistance Factors,Glutathione 

metabolism
Cancer related. Lost in prostate cancer, lung 
cancer and squamous cell carcinoma.

 TFF3. Homo sapiens, clone 
MGC:22588 IMAGE:4696566, 
mRNA, complete cds 

N74131 Trefoil Factors Initiate  Mucosal Healing
Cancer related. TFF3, activates STAT3 
(oncogene) signaling in human colonic cancers 
(Rivat et al., 2005).

FLT1 fms-related tyrosine kinase 
1 (vascular endothelial growth 
factor/vascular permeability factor 
receptor)

AA058828 VEGF, Hypoxia, and Angiogenesis Cancer related, angiogenesis.

SLPI secretory leukocyte protease 
inhibitor (antileukoproteinase) AA026192 Proepithelin Conversion to Epithelin and Wound 

Repair Control Immune response related.

BF B-factor, properdin H80257 Complement and coagulation cascades Immune response related.

C4B complement component 4B AA664406 Complement and coagulation cascades Immune response related.

ASAH1 N-acylsphingosine 
amidohydrolase (acid ceramidase) 
1

AA664155 Glycosphingolipid metabolism
Anti-apoptotic. Metabolizes ceramide to 
sphingosine-1-phosphate (SPP), an inducer of 
proliferation.

PLOD procollagen-lysine, 2-
oxoglutarate 5-dioxygenase 
(lysine hydroxylase, Ehlers-Danlos 
syndrome type VI) 

gnilledom eussitnoitadarged enisyL 042674AA

ACTG2 actin, gamma 2, smooth 
muscle, enteric gnilledom eussitnoitcefnI - arelohC 84006T

ACADSB acyl-Coenzyme A 
dehydrogenase, short/branched 
chain

H95792 Fatty_Acid_Synthesis,Bile acid biosynthesis

FBP1 fructose-1,6-
bisphosphatase 1 AA699427 Glycolysis / Gluconeogenesis

HSD17B4 hydroxysteroid (17-
beta) dehydrogenase 4 AA487914

Mechanism of Gene Regulation by Peroxisome 
Proliferators via PPARa(alpha), Androgen and 
estrogen metabolism

MGST2 microsomal glutathione S-
transferase 2 W73474 Glutathione metabolism

QDPR quinoid dihydropteridine 
reductase R38198 Folate biosynthesis

GLUD1 glutamate dehydrogenase 
1 AA017175 Glutamate metabolism

GGH gamma-glutamyl hydrolase 
(conjugase,
folylpolygammaglutamyl
hydrolase)

AA455800 Folate biosynthesis
Cancer related. Identified as a biomarker for 
pulmonary neuroendocrine tumors (he et al., 
2004)

LAMC2 laminin, gamma 2 AA677534 Inflammatory_Response_Pathway

Cancer related. Involved in tumor invasion and 
metastases e.g. in pancreatic ductal 
adenocarcinoma (Takahashi et al., 2002) and 
endometrial adenocarcinomas (Maatta et al., 
2004).

SDHA succinate dehydrogenase 
complex, subunit A, flavoprotein 
(Fp)

T70043 Oxidative phosphorylation

PON3 paraoxonase 3 R95740 gamma-Hexachlorocyclohexane degradation

core A

core B

Table 8. A complete listing of the associated pathways for the biomarkers available in different databases 
on the web (BIOCARTA, KEGG, GENMAPP).

(continued)
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ERBB2 v-erb-b2 erythroblastic 
leukemia viral oncogene homolog 
2, neuro/glioblastoma derived 
oncogene homolog (avian) 

AA480116 Role of ERBB2 in Signal Transduction and Oncology Breast cancer related

F2R coagulation factor II 
(thrombin) receptor AA455910 Thrombin signaling and protease-activated receptors

Breast cancer related, matrix metalloprotease-1 
receptor that promotes invasion and 
tumorigenesis of breast cancer cells (Boire et al, 
2005)

PPARBP PPAR binding protein T57034 CARM1 and Regulation of the Estrogen Receptor

Breast cancer related, ESR1 coactivator. 
Overexpressed in breast cancer. May play a role 
in mammary epthelial differentiation (Zhu et al., 
1999)

FLNB filamin B, beta (actin 
binding protein 278) AA486238 MAPK signaling pathway

 CDK6. Homo sapiens cDNA 
FLJ31360 fis, clone 
MESAN2000572

AA031989 Cyclins and Cell Cycle Regulation
Breast cancer related. CDK6 gene, inhibits 
proliferation of human mammary epithelial cells 
(Lucas et al., 2004)

SIAT4C sialyltransferase 4C (beta-
galactosidase alpha-2,3-
sialytransferase)

AA453813 Steps in the Glycosylation of Mammalian N-linked 
Oligosaccarides

Cancer related. Down-regulated in RCC (Saito et 
al., 2002)

 Homo sapiens, clone MGC:22588 
IMAGE:4696566, mRNA, 
complete cds 

N74131 Trefoil Factors Initiate  Mucosal Healing
Cancer related. TFF3, activates STAT3 
(oncogene) signaling in human colonic cancers 
(Rivat et al., 2005).

FLT1 fms-related tyrosine kinase 
1 (vascular endothelial growth 
factor/vascular permeability factor 
receptor)

AA058828 VEGF, Hypoxia, and Angiogenesis Cancer related, angiogenesis.

PLOD procollagen-lysine, 2-
oxoglutarate 5-dioxygenase 
(lysine hydroxylase, Ehlers-Danlos 
syndrome type VI) 

AA476240 Lysine degradation

Catalyzes the hydroxylation of lysyl residues in 
collagen-like peptides. The resultant hydroxylysyl 
groups are attachment sites for carbohydrates in 
collagen

 **Homo sapiens cDNA FLJ11796 
fis, clone HEMBA1006158, highly 
similar to Homo sapiens 
transcription factor forkhead-like 7 
(FKHL7) gene 

AA495790 Integrin-mediated cell adhesion Cancer related. RHOB protein, tumor suppressor 
and proapoptotic.

SLPI secretory leukocyte protease 
inhibitor (antileukoproteinase) AA026192 Proepithelin Conversion to Epithelin and Wound 

Repair Control Immune response related.

PLAT plasminogen activator, 
tissue AA447797 Complement and coagulation cascades Tissue remodelling

FMOD fibromodulin AA485748 Small Leucine-rich Proteoglycan (SLRP) molecules Affects the rate of fibrils formation. May have a 
primary role in collagen fibrillogenesis

DGUOK deoxyguanosine kinase R07506 Purine metabolism

ACADSB acyl-Coenzyme A 
dehydrogenase, short/branched 
chain

H95792 Fatty_Acid_Synthesis,Bile acid biosynthesis

FBP1 fructose-1,6-
bisphosphatase 1 AA699427 Glycolysis / Gluconeogenesis

MAFG v-maf musculoaponeurotic 
fibrosarcoma oncogene homolog 
G (avian) 

AA045436 Oxidative Stress Induced Gene Expression Via Nrf2

CP ceruloplasmin (ferroxidase) H86554 Porphyrin and chlorophyll metabolism
GSTM1 glutathione S-transferase 
M1 AA290737 Glutathione metabolism

ACADVL acyl-Coenzyme A 
dehydrogenase, very long chain AA464163 Fatty_Acid_Synthesis,Bile acid biosynthesis

core E

core C

core D

iHOP (Hoffmann and Valencia, 2004) and BRB 
Tools (http://linus.nci.nih.gov/BRB-ArrayTools.
html). The method used for GO functional class 
scoring is given in Supplementary Information II. 

Table 8 is a detailed explanation of some of 
the 148 uni-gene biomarkers identifi ed for each 

core (see also Tables 2a – d). Table 9 presents the 
GO categories enriched for the genes associated 
with the cores. The statistical signifi cance of the 
enriched GO categories is computed as described 
in Supplementary Information II. The complete list 
of gene markers for the core phenotypes involved 

(continued)
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in the enriched GO categories is available in 
Supplementary Table 4.

Whereas we discuss markers for each core 
subtype, we have strong confi dence only in the 
markers for Luminal A and Basal.

In Luminal A, ESR1 is up-regulated, indi-
cating that the estrogen receptor pathway is 
turned on. 

The KIT gene was already known to be lost in 
breast cancer. Introduction of the c-kit gene leads to 
growth suppression of a breast cancer cell line, MCF-7 
(Nishida et al. 1996). The Neuregulin 1 gene, which 
is up-regulated, is a direct ligand for ERBB3 and 
ERBB4, and an indirect activator of ERBB2, though 
the ERBB2+ subtype is identifi ed with Cluster C. The 
nuclease sensitive element binding protein (NSEP1), 
which is also up-regulated, is known to inhibit p53 
induced apoptosis (Zhang et al. 2003). It has also been 
recently shown to be a target of Akt phosphorylation, 
and that disruption of phosphorylation inhibits tumor 
growth (Sutherland et al. 2005). This gene is involved 
in D4-GDI signaling pathway, which may also be 
up-regulated.

A number of Luminal A markers were previ-
ously identifi ed cancer related genes. The ID4 
gene, which was also reported to be down-regu-
lated in gastric adenocarcinoma and leukemia, 
may cause the alteration of the TGF-beta signaling 
pathway which regulates the growth and prolifera-
tion of cells, blocking the growth of many different 
cell types. The TGF-beta receptor includes 
Type I and Type II subunits that are serine-
threonine kinases that signal through the Smad 
family of proteins. Another cancer related gene is 
GSTP1, which was reported to be lost in different 
types of cancers including prostate cancer, lung 
cancer and squamous cell carcinoma. Other cancer 
related genes include the TFF3 gene, which was 
shown to activate STAT3, (an oncogene) signaling 
in human colonic cancers (Rivat et al. 2005) and 
the VEGF receptor FLT1 gene.

Other Luminal A marker genes include up-regu-
lated immune system related genes (SLPI , BF, 
and C4B), anti-apoptotic gene ASAH1; collagen 
related gene PLOD and actin gamma 2 gene. Other 
genes constitute mostly metabolic genes (with a 
signifi cant enrichment, see Table 9), including 
fructose-1,6-bisphosphatase 1 (FBP1), glutamate 
dehydrogenase 1 (GLUD1) and acyl-Coenzyme A 
dehydrogenase (ACADSB). 

Biomarkers for Cluster B (Luminal B) 
include fibroblast growth factor FGFR4 which 

might be from the fact that this family of genes 
is known to be overexpressed in cancers of the 
cervix and bladder, though their role in breast 
cancers is more controversial (Streit et al. 2004; 
Jezequel et al. 2004); two cancer related genes: 
Gamma-glutamyl hydrolase (GGH) gene, which 
was also identified as a biomarker for pulmo-
nary neuroendocrine tumors (He et al. 2004), 
and laminin, gamma 2 (LAMC2) gene, which 
was reported to be involved in tumor invasion 
and metastases in pancreatic ductal adenocar-
cinoma (Takahashi et al. 2002) and endometrial 
adenocarcinomas (Maatta et al. 2004). The latter 
gene is down-regulated in the breast cancer data 
sets analyzed here. 

Generally, Cluster C (ERBB2+ subtype) 
biomarkers appear to be mostly receptors, receptor 
binding proteins and signal transduction related 
proteins (Table 9). As expected, the most charac-
teristic of these genes is the up-regulated ERBB2 
gene. Other important genes include two breast 
cancer related genes, namely, the F2R gene, a matrix 
metalloprotease-1 receptor that promotes invasion 
and tumorigenesis of breast cancer cells (Boire 
et al. 2005); and PPAR binding protein, coactivator 
of ESR1 and overexpressed in breast cancer (Zhu 
et al. 1999). The down-regulation of FLNB fi lamin 
B alters the MAP Kinase pathway with implications 
in both growth control and development.

The marker genes for the Basal phenotype 
(Cluster D) are significantly involved in cell 
cycle, regulation of cell proliferation, endoplasmic 
reticulum as well as in various metabolic processes. 
Important cancer related genes identifi ed for this 
phenotype are CDK6 gene, which inhibits prolif-
eration of human mammary epithelial cells (Lucas 
et al. 2004); SIAT4C, which is down-regulated in 
RCC (Saito et al. 2002), RHOB, which is known to 
be a pro-apoptotic and tumor suppressor gene, and 
the FLT1 and TFF3 gene. Plasminogen activator 
gene (PLAT) is involved in tissue remodeling while 
fi bromodulin (FMOD) gene has a primary role in 
collagen fi brillogenesis. 

The last of the clusters is the control or normal 
group. Here we fi nd that the genes identifi ed as 
signifi cant markers are involved in organelle orga-
nization and biogenesis, cytoskeleton organization 
and biogenesis, or in metabolic pathways (e.g. 
cofactor biosynthesis). These represent genes that 
are pathologically expressed in all tumor strata; 
consequently they are able to robustly stratify BCA 
samples from control (Normals).
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Overall, the biomarkers notably constitute genes 
that participate in breast cancer related pathways 
(e.g. marker genes involved in estrogen receptor 
pathway) and genes that were previously impli-
cated in other cancer types (e.g. GSTP1, FLT1,
see Table 8). Moreover, the enriched categories in 
each phenotype are biologically plausible, having 
already been implicated in cancer transformation 
(e.g. cell cycle, cell motility, cytoskeleton organi-
zation) (Hanahan and Weinberg, 2000) or being 
potentially important in transformation (signal 
transduction pathways, metabolism). 

Summary and Discussion
We have presented a robust clustering and pattern 
based analysis of the phenotypes identified by 
Sorlie et al. 2003. We fi nd that the clusters for 
Luminal A, Basal and Normal subtypes are homog-

enous and have predictive content. However, the 
Luminal B and ERBB2+ assignments are sensitive 
to data perturbations. One reason for this is that 
the genes chosen for the classifi cation are too few 
and not appropriate for these two categories. This 
is evidenced by the fact that the number of genes 
for Luminal B and ERBB2+ that pass our stringent 
robustness fi lters is small. Another reason is that 
hierarchical clustering is inappropriate to resolve the 
subtleties of the Luminal B and ERBB2+ categories. 
Finally, these subtypes are more heterogeneous than 
Luminal A and Basal and possibly have further 
substructure not classifi able with the genes in this 
dataset. A larger number of samples and better/more 
genes are necessary to test these conclusions. 

Several samples previously unclassified in 
Sorlie et al. 2003 were classifi able by our tech-
niques. We also found several samples which show 
a complex (multiple) phenotype signature. Given 
the treatment implications, the patients from whom 

Table 9. Enriched  GO properties for the core phenotypes.
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these samples were taken should undergo further 
analysis or different treatment. 

We also describe a general method to deal with 
sensitivity to noise in gene array data, which often 
confounds the analysis. There are four principal 
sources of noise. The fi rst, which we cannot do 
anything about, is the experiment itself: a) different 
samples handled differently in and experiment or 
between different labs; b) data improperly collected 
or improperly recorded/measured; c) microarray or 
cDNA readout with missing or unreliable entries. 
The second type of “noise” is stochastic noise; 
from statistical errors in the measurement of the 
signal or from normal variation within a phenotype 
in the sample population. We show how to partially 
account for this noise by data perturbations and 
consensus analysis. A third source of noise is the 
data analysis methods used. In particular, there are 
many different defi nitions of distance between gene 
expression vectors and many different clustering 
techniques. These often lead to different clusters 
depending on parameter choices, and to clusters 
that are unstable to perturbations. Our method 
robustly deals with this issue to get reliable predic-
tions. A fourth source of noise derives from the 
genes selected as the basis for the analysis (Ein-Dor 
et al. 2005). This set results both from the initial 
choice of genes on the chip and the subset of genes 
that is used in the clustering. The choice of genes 
on chips will improve only if chip manufactures 
come up with better chips, possibly motivated by 
the biology of the underlying processes. However, 
given a gene set, this paper describes a procedure to 
select a data perturbation independent and predic-
tive subset of the genes. 

The fundamental requirement of any clustering 
analysis is the assignment of confi dence levels 
to clusters. This is particularly important in gene 
expression analysis where a small sample set is clus-
tered using a large set of noisy genes which makes 
the clustering results sensitive to noise and suscep-
tible to over-fi tting. Our methods use re-sampling 
and cross validation to simulate perturbations of the 
data, and this allows us assess the stability of the 
clustering with respect to sample variability.

In functional genomics, agglomerative hierar-
chical clustering (HC) has been widely adopted as 
the unsupervised analysis tool of choice, mainly 
because of its intuitive appeal and its visualization 
properties. By not committing to a specifi c number 
of clusters, HC provides for a multi-resolution 
view of the data that can be extremely useful in 

exploratory data analysis. However, the method 
does not provide for an “objective” criterion to 
establish the number of clusters and the clusters’ 
boundaries. Furthermore, the resulting trees are 
known to be highly unstable to small perturbations 
of the data. The trees also tend to preserve sample 
joining errors made at earlier stages. 

To correct for these problems, we recommend 
averaging over perturbations of the original data. 
The hierarchical clustering algorithm can then be 
applied to each of the perturbed data sets, and the 
agreement, or consensus, among the multiple runs 
can be assessed. This technique will measure the 
“stability” of the discovered clusters to sampling 
variability. The basic assumption of the method is 
intuitively simple: if the data represent a sample 
of items drawn from distinct sub-populations, and 
if we were to observe a different sample drawn 
from the same sub populations, the induced cluster 
composition and number should not be radically 
different. Therefore, the more the attained clusters 
are robust to sampling variability, the more confi -
dent we can be that these clusters represent real 
structure. Overall, the procedures suggested here 
will be of use in examining any data in a way that 
makes the predictions insensitive to stochastic and 
systematic variation.

A frequent concern in gene-array data and 
analysis is whether the data is reproducible, and 
whether the inferences are consistent with current 
biological knowledge. In this paper we address the 
fi rst issue by applying the results of our analysis 
on one data set to make predictions on another. 
For the phenotypes which cluster well, we can 
make defi nite predictions on the unseen data. In 
addition, we identify pathways via genes whose 
markers are predictive of phenotype. It is likely that 
these genes have only diagnostic value, i.e. they 
are downstream effects of an established disease 
process whose cause is outside the identifi ed set 
of genes. This is a problem with most microarray 
data which is usually available only for cells which 
show established disease. 
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Supplementary Information 

Supplementary Information I: Multiple Testing Correction Metrics 
The general multiple hypothesis testing analysis used in our paper results in the following matrix: 

We use the following statistics to analyze this 
table. 

False discovery rate (FDR). The FDR (Benjamini 
and Hochberg 1995) is the expected proportion 
of Type I errors among the rejected hypotheses: 
FDR = E(Q); with Q = V/R if R > 0 and Q = 0; if 
R = 0. 

The q-value of a gene (Storey and Tibshirani, 
2003) is defi ned as the minimal FDR at which it 
appears signifi cant. 

Family–wise error rate (FWER, Dudoit et al. 
2003). The FWER is defi ned as the probability of 
at least one Type I error (false positive): FWER = 
Pr(V > 0)

The Bonferroni correction (Bonferroni 1935) : 
Suppose we conduct a hypothesis test for each gene 
g = 1,…,N, producing an observed test statistic: 
Tg , an unadjusted p–value: pg. = the probability 
under the null hypothesis that the test statistic is at 
least as extreme as Tg. Under the null hypothesis, 
Pr(pg < a ) = a. 
Bonferroni adjusted p–values: pg = min (1, N pg.) 

References for Supplementary 
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Supplementary Information II: 
Functional class scoring 
for GO categories
We computed the statistical signifi cance of a GO 
category within a collection of N gene markers 
by following Pavlidis et al. 2004: A p-value was 
computed for each of the N marker genes in our 
collection. Next, the set of p-values was tested for 
enrichment in a GO category by using the Func-
tional Class (LS) and the Kolmogorov-Smirnov 
(KS) statistics. For a set of N genes, these are 
defi ned as
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The statistical signifi cance of a GO category with 
N genes was measured by computing the empirical 
distribution of LS and KS from 100,000 random 
selections of N genes in the complete pool of genes. 
The LS/KS permutation p-value was computed by 
comparing the LS/KS statistics in these experi-
ments to the measured value of these statistics for 
the selected genes. A GO category was considered 
enriched if its corresponding LS or KS re-sampling 
p-value was below 0.005.
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