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Abstract 

We cast a model of biological resource management as a problem of adaptive control in a nonlinear dynamical 
system. Optimisation of harvest, while ensuring that the resource population persists, is achieved through a simple 
algorithmic procedure which is remarkably robust under a variety of perturbations. 
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1. Introduction 

Reproduction models of biological populations 
have been widely used in the management of 
exhaustible resources (Clark, 1985, 1990). Typi- 
cally, the models are used to evaluate various 
management programs that might be used with a 
view to the optimisation of some economic per- 
formance index (Clark, 1985, 1990). Recently, 
these bioeconomic models have received consid- 
erable attention as they form a possible basis for 
p lann ing  sus ta inable  d e v e l o p m e n t  ( H o p -  
pensteadt, 1982). The problems addressed by sus- 
tainable development basically involve deriving 
maximum profit while ensuring that the standing 
stock of the exhaustible resource does not vanish. 

In this context Joshi and Gadgil (hereafter 
referred to as JG) studied a model of utilisation 
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of a single species of biological resource popula- 
tion by a community (Joshi and Gadgil, 1991). 
The aim of the community is to maximise the 
harvest of the resource population, without seri- 
ously depleting it. JG speculated that this could 
be achieved through a total protection of a frac- 
tion of the resource biomass from being har- 
vested, in the form of uniformly distributed refu- 
gia. Through a combination of numerical and 
analytic studies they showed that such practices 
can indeed lead to the desired goal. 

We recast this problem as one of adapt ive  

control .  Adaptive control, which is a method of 
self-regulation, whereby a system learns to con- 
form to a desired paradigm, is an area of research 
in control theory (Santa Clara Workshop, 1987) 
that has seen considerable development in the 
past few decades. In particular, it is thought to 
occur commonly in biological and ecological con- 
texts (Rosen, 1967, 1970; Toates, 1975). The basic 
aim of control theory is to make a dynamical 
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system achieve a desired state. In nonlinear sys- 
tems, where the dynamics can switch between 
different and competing attractors, the idea of 
adaptive control was suggested some years ago 
(Huberman and Lumer, 1990), and applied (Sinha 
et al., 1990) to model problems. 

Ideas of control theory have also been applied 
to biological systems (Rosen, 1967,1970; Toates, 
1975) to form simple models to explain their 
capacity to adapt to their changing environment 
(Holling, preprint). In the past few years, it has 
become increasingly common to model biological 
and ecological systems through nonlinear differ- 
ence equations (see, e.g. May, 1976; Hoppen- 
steadt, 1982) which are discrete in time. The 
dynamics described by the model equations is 
generally complex and can show a rich spectrum 
of dynamical behaviour as parameters in the 
model are varied (May, 1976; Feigenbaum, 
1978,1979; Collet and Eckmann, 1980; Devaney, 
1986): these can be simple attractors such as fixed 
points or limit cycles, as well as strange attractors 
with chaotic dynamics. However, it is an empiri- 
cal observation that many real systems operate 
predominantly in a single behavioural mode, re- 
gardless of the intrinsic properties of the govern- 
ing equations. Furthermore, the behaviour is 
maintained even when the parameters governing 
their dynamics can change due to environmental 
fluctuations. Consequently, studies on control of 
nonlinear systems (see Shinbrot et al., 1993 for a 
comprehensive review of various methods of con- 
trol in chaotic systems) have centred on trying to 
ensure that the system reaches a desired state, 
which is known. This could be either a stable or 
an unstable cycle or a fixed point. In such situa- 
tions a desired behaviour of the dynamical system 
is selected and control is then effected in order to 
ensure that the desired state is maintained. 

In studies utilising adaptive control so far 
(Huberman and Lumer, 1990; Sinha et al., 1990), 
an attempt was made to reach a desired known 
state. In the present paper, we consider the prob- 
lem of controlling a nonlinear system so that it 
reaches a desired state which is a priori not 
known, although the desired state is one which 
corresponds to a state variable reaching an ex- 
tremum (the value of which is not known). Such 

situations arise, for example, in harvesting prob- 
lems where the aim is to optimise the harvest 
subject to certain constraints. We illustrate the 
control mechanism on the model studied by JG. 

In this paper, we combine the ideas of refugia 
and adaptive control to suggest a practical scheme 
for resource management. It has been stressed 
most notably by Waiters (1986) that resource 
management should be viewed as an adaptive 
process. There are several advantages of formu- 
lating the problem of sustainable development as 
one of adaptive control. Recently, much work has 
been done on the control of nonlinear systems, 
and several different methods of control have 
been developed (Shinbrot et al., 1993). This new 
perspective can yield fresh insight and suggest 
different tactics in resource management. More- 
over, control can be applied not only to reach 
fixed points but also orbits of higher period and 
limit cycles. A wider field can therefore, be ex- 
plored than the one limited to the harvesting of a 
single species. More realistic cases of multi- 
species problems (Yodzis, 1989), which may in- 
volve higher period orbits, become accessible. 
Even in the single species problem, there are 
certain populations of fishes (for example her- 
rings and anchovies; Clark, 1985) which are sub- 
ject to cycles of abundance and decline. Such 
situations can be dealt with by the present adap- 
tive control mechanism. Since such an application 
is important in policy design (Waiters, 1986) we 
suggest a specific methodology below. 

In the following section, we briefly review the 
models of resource dynamics introduced by JG, 
both with and without refugia. In Section 3, the 
method of adaptive control is presented for the 
particular case at hand. Section 4 deals with the 
application of control to the resource dynamics. 
This is followed by a discussion of the robustness 
of the method in Section 5, and a summary in 
Section 6. 

2. Resource dynamics 

In this section we briefly review the model 
studied by JG, which describes the exploitation of 
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a resource population of a single species. Each 
time step consists of two phases: a growth phase 
governed by a logistic law 

B; = rB,(1 - B t ) ,  (1) 

followed by a harvesting phase, where effort E t 
results in a harvest Ht,  obeying a law of diminish- 
ing returns 

H t = B ; (1  - e - E ' ) .  (2)  

After the harvest the subsequent dynamics is 
given by 

B,+ 1 = B ; - H ,  (3) 

(other growth laws such as modified logistic: B; = 
rnt(1 -- Bt)~'; hyperbolic: B~ = rn t ( l  - (r  - 1)B/); 
or Ricker: B~ = B t e x p ( r ( 1 - B t ) ) ,  all give similar 
results.) 

When a fraction a of the resource biomass is 
exempted from being harvested in the form of 
refugia, the harvest-effort relation is modified as 

n t = (1 - a ) B ; ( 1  - e -E ' ) .  (4) 

The resource population remaining after ex- 
ploitation is 

Bt+ 1 = ( 1  - a ) B ; e  -~ '  + a B '  t 

= arB , (1  - Bt )  + (1 - a ) r B , ( 1  - B t ) e  -E, 

= r B t ( 1 - B t ) [ a + ( 1 - a ) e - E ' ] .  (5) 

For constant effort, without refugia, the resource 
population reaches an equilibrium value given by 

e E 

neq = 1 - - - ,  (6) 
r 

which implies that the resource biomass persists 
as long as the harvesting effort E < gma x = In r. 
In this model the equilibrium or sustainable value 
of the harvest is given as 

e 2E e E 
Heq  = e E - 1 - - -  + - - .  (7) 

r r 

Clearly, Heq vanishes for E = 0 and E =Ema x 
and attains a maximum value 

/._~= ( r -  1) 2 

4r (8) 
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Fig. 1. Variation of the equilibrium biomass level, Beq , and 
harvest, Heq, as a function of effort, E, using Eqs. 6 and 7. 

for the optimal effort /~ = ln[(r + 1)/2] (see Fig. 
1). When refugia are introduced the equilibrium 
biomass reaches the value 

1 

B e q = l - r [ a + ( l _ a ) e _ e ] ,  (9) 

so that the resource population does not become 
extinct as long as ot satisfies the inequality r[a - 
(1 - a)e  - e ]  > 1. For infinitely high harvesting ef- 
fort, Beq ~ ( 1 -  1 / r a ) ,  and the sustainable har- 
vest reaches the value 

(1 - a ) ( r a -  1) 
n e q  --~ ( 1 0 )  

?'0/2 

The refugium size 6 that maximises the harvest is 
therefore 

2 
(11) 

~ = l + r  

and the maximum harvest thus obtained is /-I = 
( r -  1)2 /4r .  Note that this is the same value 
attained as in the case without refugia (this con- 
clusion depends on the assumption that refugia 
are uniformly distributed over the resource popu- 
lation). 

3. A d a p t i v e  c ontr o l  

It is well known (May, 1976; Feigenbaum, 
1978,1979; Collet and Eckmann, 1980) that the 
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logistic growth law (Eq. 1) is capable of extremely 
rich dynamical behaviour, for 0 < B < 1 and 0 < r 
< 4. For 0 < r < 1, the map is uninteresting as 
the dynamics is asymptotically attracted to the 
fixed point B = 0. At r = 1 there is a transcritical 
bifurcation, i.e. the two existing fixed points (B = 
0 and B~, = 1 - 1/r)  exchange their stability. Be- 
yond r = 3 there is a series of period-doubling 
bifurcations accumulating at r---3.57. At each 
stage of the bifurcation a 2" period becomes 
unstable and 2 n+l period becomes stable. Be- 
yond the accumulation point, orbits of other peri- 
ods appear, with many completely aperiodic but 
bound orbits between them, until the birth of a 
3-period orbit through a tangent bifurcation at 
r = 3.8284 . . . .  After this the dynamics evolves on 
aperiodic orbits and for r = 4 we have fully devel- 
oped chaos (Devaney, 1986). 

By the control of such a system we mean the 
following. Say that the system operating at some 
parameter  value r = rs, is subjected to a sudden 
perturbation and the parameter  value jumps to 
some r = rp :~ rs. This alters the behaviour of the 
system. If 1 < r s < 3 to begin with, the stable 
behaviour would be a period 1 orbit; if rp > 3 
after perturbation, the system would be locked 
into some higher period orbit. We would like to 
restore the system to its original dynamical be- 
haviour. A difficulty is that for many a system the 
dynamics may have more than one possible stable 
orbit for the same parameter  value. For example 
(Sinha et al., 1990), a system can operate at a 
fixed point or a limit cycle for the same set of 
parameter  values. (This is common in dynamical 
systems of higher dimensions.) In order to restore 
the system to its original or desired behaviour a 
detailed knowledge of the dynamics is important. 

A possible mechanism for robust self-regu- 
lation was suggested (Huberman and Lumer, 
1990) through a simple and effective feedback 
algorithm (for one-dimensional systems) using an 
error signal proportional to the difference be- 
tween the goal output and the actual output 
(Huberman and Lumer, 1990; Sinha et al., 1990; 
Sinha, 1991). This error signal tunes the parame- 
ters of the system, which readjust so as to reduce 
the error to zero. This algorithm was later gener- 
alised to higher dimensions and for systems with 

more than one variable parameter  (Sinha et al., 
1990). Thus, for a general N-dimensional dynam- 
ical system 

:. dE 
- dt -F(IJ;-7;t),'~ " B (12) 

where /~  --- (B1,B 2, . . .  ,B N) are variables and r '=  
( r l , r 2 , . . .  ,r M) are parameters governing the dy- 
namics, the prescription for adaptive control is 

r = s g ( B - B s )  (13) 

where Bs is the desired steady state, s is the 
stiffness of control and g(x) is an arbitrary func- 
tion with the requirement that g(0) = 0. A variety 
of different forms of g have been tried and found 
to be equally effective (Sinha et al., 1990). This 
simple algorithm is remarkably robust even in the 
presence of external random noise. The time 
required for a system to readjust to its original 
behaviour, after a sudden perturbation, is in- 
versely proportional to stiffness of control 
(Huberman and Lumer, 1990; Sinha et al., 1990; 
Sinha, 1991). This linearity of the recovery time is 
independent of the functional form of g and the 
external noise, and appears to be a universal 
feature of such control (Sinha et al., 1990; Sinha, 
1991). 

Orbits of period n > 1 can be controlled by 
generalising Eq. 13 to 

n 

~ r = s H g ( n - n i )  (14) 
i = 1  

where Bi's are the elements of the stable period 
n orbit. If the function g is viewed as a derivative 
of some fictitious potential V and control is 
achieved through g = 0, the problem can be rede- 
fined as one of finding the extrema of V. With 
this viewpoint control is achieved when V ' =  0. 
Orbits of period 2 could be controlled (Sinha et 
al., 1990) with the prescription of Eq. 14 and 
g(B) = B, but this form of g(B) is not very stable 
for higher periods. This is so because with g(B) 
= B, the condition g(0) = 0 is a zero of order 1, 
i.e. only the first derivative of V vanishes. To 
increase the stability of the procedure, we require 
that several derivatives vanish as well; this can be 
achieved by taking g of the form 

g(B)  =B p (15) 
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Fig. 2. Results of applying adaptive control (Eqs. 14, 15) on 
period 2, /z s = 3.23604, stiffness s = 1.0, exponent p = 0.27. 
The perturbed value of the control parameter was/zp = 3.9. 

value of r appropriate to the existence of a stable 
period k orbit. At time t = 50, the control param- 
eter was perturbed to a new value which was 
chosen to correspond to chaotic motion. Simulta- 
neously, the control Eq. 14 was applied, and the 
system eventually recovered the original be- 
haviour. As clear from the figure, the control is 
extremely effective since the recovery time is quite 
small. In fact, as mentioned above this time can 
be made smaller by increasing the stiffness of 
control. The drawback of too high a stiffness 
(s > 100) is that the dynamics may get arrested at 
an orbit which is close to the original behaviour, 
without actually reaching it exactly. Also, at such 
high stiffness constants it becomes more and more 
difficult to control a given behaviour as the dy- 
namics becomes extremely sensitive to change in 
parameters. Thus the optimal control stiffness is 
of a moderately large magnitude (s > 1-10). 

where p is some sufficiently large exponent. Us- 
ing this form of g we were able to control higher 
period orbits for the logistic growth law (Eq. 1). 
Fig. 2 shows the control of a period 2 orbit. This 
control was found to be equally effective for 
other k-periods, k = 3, 4, 5 and 8. In all these 
cases, the dynamics was first evolved with the 
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Fig. 3. Temporal variation of the reduced variables: harvest, 
/~, biomass level, B / B  s and effort, /~, when adaptive control 
algorithm (Eq. 18) is applied. H is the maximum sustainable 
harvest (MSH),/~ the effort corresponding to MSH and B s is 
t h e  asymptotic value of biomass level. 

4. Variable harvesting strategy 

As stated above, the problem of sustainable 
development aims at maximising profit while en- 
suring that the exhaustible resource persists. The 
model of resource dynamics studied by JG is such 
a problem, and the strategy they proposed for 
reaching the maximum sustainable harvest relied 
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Fig. 4. As in Fig. 3, for the case when refugia (Eqs. 18, 19) are 
incorporated in the dynamics. 
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Fig. 5. Temporal variation of harvest, H, biomass level, B, and effort, E, for the case when random noise, of strength tr, is added in 
the dynamics (Eq. 21): (a) o-/B s = 0.006; (b) o'/B s = 0.03; (c) o'/B s = 0.3. B s is the asymptotic value of the resource biomass. For 
comparison reduced variables (as defined in Fig. 3) are also plotted. 

on a simple feedback mechanism:  start with a 
small effort Eo,  and  vary it subsequent ly  as fol- 
lows 

Et+ n = E  t + D  t 

= x D t - n  if H t > H t _  n 

D ,  = - x D t _ n  i f H  t < H t _ .  ( 1 6 )  

where n is a time-lag, and  x is a small positive 
factor. They find they were able to reach the 
desired goal of maximal  harvest  for n > 10, and  
x = 0.01. 

To view this as a p rob lem of adapt ive control,  
note  that  the goal ou tpu t  is u n k n o w n .  However,  
we know from Eqs. 6 and 7 that  d H e q / d E  = 0 for 
E =/~,  and  as shown above, adaptive control  can 
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be used in problems of maximisation. We thus 
propose the following variable harvesting strat- 
egy. Vary the effort as follows 

OH 
/ ~ = e - -  (17) 

bE 

where e is stiffness of control. The derivative is 
taken at discrete intervals of time, as after every 
change of effort the system should be allowed to 
adjust to the new level of exploitation. In this 
case control is to be applied to reach a fixed 
point, and Eq. 17 is the appropriate substitute for 
Eq. 13, with g = (SH/bE). This strategy indeed 
achieves the objective. 

To drive the system faster towards the ex- 
tremum, an exponential damping term can be 
added analogous to dynamical quenching (Stil- 
linger and Weber, 1982) 

E = e x p  - . ( 1 8 )  

The effect of the exponential damping term is to 
reduce the fluctuations in the resource biomass 
level and the effort, once the harvest is sustained. 
A discretised version of Eq. 18 was used, i.e.: 

~H Et+l=Et +e-~exp(-[~E ). (19) 

These results are shown in Fig. 3, where it can be 
seen that with the dynamical quenching, fluctua- 

tions in the resource population level have been 
significantly reduced from an amplitude of 0.165 
(in the JG case) to 0.055 (Fig. 3). This is impor- 
tant as it ensures that the standing stock of the 
exhaustible resource is maintained at a more or 
less steady value, instead of undergoing large 
fluctuations which could lead to a temporary ex- 
termination of the stock. (This strategy works for 
all the different growth models described above. 
The basic requirement for this strategy to work is 
that the dynamics should involve a law of dimin- 
ishing returns.) 

We now consider the case with refugia. As 
stated above, this involves the total protection of 
a fraction a of the resource population. We have 
therefore an additional parameter  to vary in or- 
der to reach our objective. Since a higher level of 
effort increases the risk of resource extermina- 
tion, the procedure should involve an increase in 
the area under a refugium or a set of refugia, 
whenever the harvesting effort is stepped up, i.e. 
the change in a will be proportional to the change 
in effort. The decision rule (Eq. 19) is then modi- 
fied by adding to a change in harvesting effort a 
change in refugium size as follows 

at+ 1 =o/, Jr-s(E t - E , _ I ) .  (20) 

where s is an additional stiffness parameter.  
Again, our harvesting strategy drives the system 
to the maximum harvest with however a signifi- 
cantly reduced waiting time (see Fig. 4). With 
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Fig. 6. Temporal variation of H, B and E, for the case when calamities are taken into account in the dynamics: calamity introduced 
in (a) the learning phase, (b) the stable phase. The variables represent the quantities defined above. 
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refugia, the fluctuations in the resource popula- and the harvest rapidly attains its maximum oper- 
tion are still further reduced, ational value. 

5. Resilience of the control 

The present control technique employed is ro- 
bust to a variety of external perturbations such as 
external random fluctuations or calamities. Any 
realistic system will be subject to stochastic fluc- 
tuations in the environment, and therefore any 
proposed strategy should take into account this 
fact and be resilient to such fluctuations. One 
way in which random fluctuations can be intro- 
duced is by adding uniformly distributed random 
noise in the dynamics involving the growth of the 
resource biomass 

B ;  = r O t ( 1  - O t )  -.f- o'Tit (21) 

where "at is 6-correlated noise of strength or. The 
strategy embodied in Eq. 18 is extremely effective 
in maintaining the maximum harvest as long as 
o-/B s < 0.1, where Bs is the level of the standing 
stock when the maximum sustainable harvest is 
reached. Results are shown in Fig. 5, where the 
variables plotted are the harvest H, resource 
biomass B and effort E against time for different 
noise strengths cr. Fig. 5a shows the plot for low 
noise, o'/Bs = 0.006, Fig. 5b for moderate noise, 
o'/B~ = 0.03 and Fig. 5c for large noise amplitude, 
o-/Bs = 0.3. As can be seen clearly from the plots, 
fluctuations in the maximum harvest are small 
(Fig. 5c) even when the fluctuation in the re- 
source biomass level is large. 

The present algorithm is also resilient to 
calamities, i.e. instantaneous extermination of vir- 
tually the entire resource population. In a real 
situation, this could, for example, correspond to a 
year of drought or an attack by pests. In our 
model we introduce calamities by setting B t = 

0.001 at a time t = t c. Fig. 6a illustrates the case 
in which the calamity was introduced in the learn- 
ing phase, when the system has not yet reached 
the desired steady state. Fig. 6b shows the case 
when the calamity was introduced after the sys- 
tem has attained the maximum harvest and is 
operational for sufficient time. The introduction 
of calamities even at this phase is rapidly nullified 

6. Discussion 

The method suggested above can find practical 
application. As an example of a realistic case (of 
significant commercial interest), consider the 
Antarctic baleen whales, which were reduced to a 
fraction of their former abundance in the 1960s, 
due to overfishing by the whaling industries 
(Clark, 1985). From estimates of International 
Whaling Commission, the following values derive 
for the environmental carrying capacity, K, and 
the catchability coefficient, q, 

K = 400 000 blue whales units (BWUs) 

q = 1.3 x 10 -5 per catcher day 

Let X 0 be the initial population of the whales 
in BWUs. (We work in dimensionless units, by 
rescaling the variables as B = X / K ) .  The initial 
value of B is set to B 0 = 0.2, i.e. we start with a 
population which is one-fifth of the environmen- 
tal carrying capacity. Indeed, this was the level to 
which the whaling industries had reduced the 
population of these mammals. In Eq. 1, r is taken 
to be 1.5, which roughly corresponds to an intrin- 
sic growth rate of 4% per annum. The results of 
applying the dynamical equations in Eqs. 1-3 
above give the following numbers for the first few 
iterations. If one starts with an initial effort of 
e 0 = 2000 catcher days per season, which in our 
dimensionless units becomes E 0 = qe o = 0.026, at 
time t = 0  we find B~=0.24  and H 0 = 6 . 1 6 x  
10 -3. At time t = 1, B 1 = 0.234 and changing the 
effort to E 1 = 0.039 (i.e. e I = 3000 catcher days 
per season), the harvest increases to H~ = 0.0103. 
We then use Eq. 18 to calculate the new level of 
effort, which turns out to be E 2 = 0.062. This 
effort is held constant for the next ten seasons. 
At the end of this period the yield reaches a 
value of 0.0258 and the biomass level is 0.283 (i.e. 
113 200 BWUs). This procedure is followed until 
equilibrium is reached, when the harvest level is 
seen to fluctuate about 0.0416 and the biomass 
level varies about an average 0.166 (i.e. 66400 



S. Tiwari et al. / Ecological Modelling 84 (1996) 53-62 61 

BWUs). The effort remains at a level 0.224 (i.e. 
about 17 230 catcher days per season) on average. 

In order to implement the model including 
refugia, we start with a refugium of size zero and 
vary it subsequently as prescribed by Eq. 20. The 
other parameters remain the same as above ex- 
cept that now we need not wait for ten seasons 
before changing the effort. At equilibrium the 
harvest level is the same as above, but the fluctu- 
ations have been significantly reduced, so that it 
is constant, for all practical purpose. The biomass 
level is also approximately at the same level 0.158 
(i.e. 63 200 BWUs) and is constant. On the other 
hand, effort level has gone up to 0.393 (i.e. around 
30 230 catcher days per seasons). Thus, the exam- 
ple goes to show that judicious planning of re- 
source exploitation using the methods of adaptive 
control and incorporation of refugia can increase 
the level of harvesting without necessarily endan- 
gering the survival of the species. Moreover, the 
equilibrium state is reached faster as the waiting 
time before every change of effort, has been 
reduced from ten seasons to one. 

The above example shows how the control 
algorithm developed in this paper works in a 
practical problem. The robustness of this method, 
as exemplified by the studies with various pertur- 
bations, is an added advantage. Moreover, the 
recasting of the JG model as a control problem 
makes it more amenable to further exploration. 
One direction where this may prove useful is in 
the study of multi-species management, and mul- 
tiple harvesting seasons. In these situations, the 
steady state is usually more complex than a sim- 
ple fixed point. For example, in the case of multi- 
ple harvests more than one state variable is re- 
quired to reach the maximum and it is a problem 
of interest whether an algorithm can be formu- 
lated so as to reach all the maxima. In the case of 
multi-species management, various kinds of steady 
states can exist, such as limit cycles (for two 
species with Lotka-Volterra interactions, for ex- 
ample). As pointed out with the example of the 
logistic map, the control mechanism presented in 
this paper is capable of controlling orbits of arbi- 
trary period; it may be useful to explore the 
possibility of applying this control in the harvest- 
ing of several species and deducing efficient 

adaptive mechanisms in policy design for complex 
problems. 
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