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Complex Behaviour of the Repressible Operon 
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The repressor-mediated repression process in bacteria is modelled using a gene- 
enzyme=endproduct control unit. A combined analytical-numerical study shows 
that the system, though stable normally, becomes unstable for super-repressing 
strains even at low values of the cooperativity, of repression, provided demand for 
the endproduct saturates at large endproduct concentrations: In addition the system 
also shows bistability, i.e., the co-existence of a stable steady-state and a stable limit 
cycle. The tryptophan operon is used as a model system and the results are discussed 
in the light of differential regulation of gene expression in lower organisms, especially 
in mutant strains. 

Introduction 

The process of regulation of gene expression in prokaryotic systems was put in a 
coherent form through the operon hypothesis (Jacob & Monod, 1961). This was 
originally put forward for the iac operon, but was also found suitable for both 
classical inducible and repressible systems, such as, lac, trp and arg, where the 
endproduct of a particular metabolic pathway controlled by the operon induces or 
represses the activity of the operon in turn. This hypothesis was subsequently given 
mathematical form (Goodwin, 1965, 1966) using a genetic control circuit describing 
a gene-enzyme-endproduct unit. Much work has been done since on this unit, 
involving both positive and negative feedback loops (representing inducible and 
repressible systems), from the point of view of its stability. Modifications have been 
made to introduce oscillations or instability into the system (Griffith, 1968; Rapp, 
1975; Sanglier & Nicolis 1976; Goldbeter & Nicolis, 1976; Allwright, 1977; 
MacDonald, 1977; Tyson & Othmer, 1978). The equations have also been used to 
model a number of periodic phenomena observed in cellular systems (Goodwin, 
1976; Bliss et al., 1982; Tyson, 1983). 

Both induction and repression are in many cases mediated by a small molecule 
(usually a protein) called the "inducer" orthe "repressor". The gene for this molecule 
does not reside in the operon, but is controlled by the respective endproduct. These 
molecules have two binding sites--one for the endproduct of the pathway and the 
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other for the operator DNA. Binding of  the endproduct  changes the conformation 
of  the molecule thereby influencing its binding to the operator DNA. The binding 
constants of  these two interactions differ considerably. The kinetics of  these interac- 
tions between ligands and macromolecules decide the behaviour of  the system, i.e., 
the synthetic profile of  the endproduct.  It is clear that mutations at the operon or 
the repressor or inducer genes can influence the dynamics of the s2ystem considerably 
through structural changes in the molecules of  interest, which then lead to changes 
in the kinetics. 

In this paper we formulate a model for the repressible operon by considering a 
repressor-mediated repression process. We assume that the endproduct-repressor  
binding is cooperative, obeying Hill's equation, and also consider the factor of  
utilization of  the endproduct  in cellular processes, such as protein synthesis. The 
model system considered for these equations is the t ryptophan operon for which 
parameter values are known (Bliss et al. 1982; Tyson, 1983; Schevitz et al., 1985). 

Our model differs from previous treatment of  the repressible operon in that we 
use a more accurate functional representation of  the repression process. This then 
does not permit us to assume simplifications introduced by earlier investigators 
(Tyson & Othmer 1978; Tyson 1983), and makes comparison with earlier work on 
similar systems difficult. 

We have carried out a detailed analysis of  this model to determine the changes 
in behaviour this system can show under the different conditions that arise due to 
mutations. Our principal findings are: (a) the wild-type operon is stable; (b) the 
operon is always stable if the endproduct  is not utilized (i.e., g = 0); (c) when the 
endproduct  is utilized, the operon can lose stability (through a Hopf  bifurcation) 
for super-repressing strains; and (d) the system shows bistability for realistic 
parameter values. 

The aim of the present study is to see how a typical operon that follows the given 
kinetic scheme behaves under changing circumstances. Kelley & Yanofsky (1985) 
have isolated a large number of  t ryptophan repressor gene (trpR) mutations in 
E. coli which have varied effect on tryptophan biosynthesis in the cell. They obtained 
"super-repressor" and "loose-binding" mutants in which the L-tryptophan and free 
repressor binding is unchanged but the holorepressor-operator  binding is affected. 
Such results, where the two steps of  the repression process are delineated, opens 
up the possibility of testing predictions based on our present model. 

The Model 

In the case of an operon concerned with the regulated biosynthesis of  a particular 
endproduct,  the temporal evolution of  the system consisting of  messenger RNA 
(M),  protein or enzyme (E)  and the endproduct  (P) of the pathway can be 
represented by: 

d M  
- K . , D F ( P )  - K~ M 

dt  

d E  
- - =  K e M  - K 2 E  
dt 
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dP 
dt KFE - KdP -- Vmax (1) 

where K,,, Ke, Kp, K~, and K2 are rate constants, D is the copy number of the 
operon (gene dosage), Ka is growth rate, and Vm,x is the constant rate of utilization 
of the endproduct (in protein synthesis). F(P)  is a function describing the transcrip- 
tion of the operon as regulated by the endproduct. In a system where repression of 
the operon is through a repressor protein, the process occurs in two steps: first, the 
endproduct P (i.e. co-repressor) binds to the free repressor (aporepressor R0), and 
then this complex (called holorepressor R ~) binds to the operator DNA of the 
operon and inhibits transcription by preventing the RNA polymerase from binding 
or proceeding. Assuming that n molecules of endpro.duct bind to each repressor 
molecule and the interaction is allosteric in nature, the fraction of holorepressor 
molecules (R~) can be obtained from the saturation function: 

R l p" 
R , - K " n + P "  (2) 

where R, is the total concentration of repressor molecules in the cell (= R o + R  ~) 
and KR denotes the pseudo-Michaelis constant for the interaction. 

This holorepressor (R ~) now can interact with the free operator (O-) and repress 
the operon. The rate of transcription is directly proportional to the fraction of free 
operators, that is to 

O-  1 1 
m ~  m m 

O, I + K R  1 R ~ 
l + - -  

Ko 

(3) 

where O, is the total number of operators (free and bound) and K (K0) is the 
association (dissociation) constant for the operator-holorepressor interaction. Using 
eqn (2), we find that: 

O-  Ko(K~ + P n ) ( 1 - - - ~ ) K ~  t_ 1 (4) 
F ( P ) =  O,-KoK~+(Ko+R,)P"- K ~ + ( I + T ) P "  I+~ 

where Y = R, /Ko ,  a dimensionless number. 
This repression function F ( P )  differs from those used earlier (Goodwin, 1965; 

Tyson & Othmer, 1978; Bliss et al., 1982; Tyson, 1983) owing to the kinetics of the 
two distinct steps of the repression process. The form of the repression function 
(equation (4)) does not permit any further simplifying assumption such as R, ~ Ro 
(Tyson & Othmer, 1978). 

The first equation in (1) can now be written as: 

d M  (DKmy__K"R~ 1 D K , , _ K I M  " (5a) 
dt - \  I + T  / K " n + ( I + T ) P " + I + T  

The enzyme and endproduct equations are: 

dE 
- K , M  - K , . E  (5b) 

dt 
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d P  
dt  - K p E  - K d P  -- Vmax- (5C) 

It is convenient for analytical purposes to write the above equations in dimensionless 
form. Changing variables as: 

M E P t 
x Mo' Y Eo' Z=p0 ,  T=--t0 

where 

Mo = K R  , Eo - Kpto'  Po = K R ,  

0/t = K1 to, 0/2 = K2to,  0/3 = Kdto and 

KR ~ 1/3 
to = \ D K . , K ~ K p ]  

g = Vma xlO/KR, 
the equations (5a, b, c) then become: 

d T -  1+(1 + y ) z "  a l x + l + - - ~  

dy 
d T  - x - 0/2Y (6) 

d2 
~ =  y - 0 / 3 z - g .  

Our choice of  scaling leaves all the 3' (or Ko) dependence complete and explicit 
in the repression factor alone. This not only allows us to study the behaviour of  the 
system under  variation of  y, but also helps us to use the same values for the 
dimensionless parameters 0/1, 0/2, a3 and g used earlier which were obtained 
experimentally for the t ryptophan operon (Tyson, 1983). Non-dimensionalizing the 
set of  equations reduces the number of  independent  parameters to 5. 

The steady-states and the eigenvalue equation in the linear approximation are 
given by: 

and 

-~ = 0 / 2 0 / 3 7 S + 0 / 2 g ,  P=0/33+g (7a) and (7b) 
0/ ,0 /20/3( l+y)Z"+l  + { 0 / t 0 / 2 ( l + y ) g - - 1 } Z "  +0/10/20/33+(0/10/2g--1)=O (7C) 

P(A ) = ~ 3 ..1_ (~I "{- 0/2+ 0/3) A2Jt- (0/10/2 .+. 0/20/3 d- 0/30/i)}k -{- (0/10/20/3 "Jr- B) ~--- 0 

where 

(8) 

B =  >0 .  (1+ (l+,),)r']: 
To get an idea of  the conditions at which instability can occur we choose a 

combined analytical-numerical procedure. For a Hopf  bifurcation to occur, a pair 
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of  eigenvalues must cross the imaginary axis with the third eigenvalue being real 
and negative (Marsden & McCracken, 1976). Hence, we assume that at critical 
values of  the parameters, the set of  three zeroes of  eqn (8) consists of  a pair of  pure 
imaginary conjugate and one real negative root. Thus P(A) in eqn (8) must be of  
the form (with r and n positive real numbers).  

P(A) = (A - r)(A - in)(A + iT) 

o r  

A3 + rA2 + ,r/2A + r n 2 = 0 .  

Equations (8) and (9) are identical only when 

r = (o q  + o r2+  c~3) , "r]2 = a l o t 2  + a 2 a 3  + ot30tl > 0,  and rn 2 = a t a 2 a 3 + B  

(9) 

o r  

2 Ot I Ot2Ot3 + B 
= o t l a 2 +  ot20t3 + ot3ot I = > 0 .  (10) 

a t + a 2 + a 3  

The necessary and sufficient condition for there to be two pure imaginary and 
one real eigenvalue is: 

( a , a 2 +  a2a3 + a3ot,)(al + a2 + a 3 ) -  ala2a3 = (yn$"- ' ) /{1  + (1 + y)g,}2. (11) 

We consider only positive z roots. 
We use expressions (7c) and (11) to find values of  3' (for different values of  g) 

at which bifurcation may occur. Reasonable values of  the parameters are chosen 
from the t ryptophan operon system. The t ryptophan repressor protein is a dimer 
and binds two molecules of  L-tryptophan per dimer (Schevitz et al., 1985); so n = 2. 
The value of  y for a wild-type strain is 10 (K0 and R, are about 10 -~° mol/ l i t re and 
10 -9  mol/li tre) (Platt, 1978). Since the scaling used by us and Tyson (1983) are the 
same (KR = pseudo-Michaelis constant describing the binding of  co-repressor P to 
aporepressor R o=6X 10 -5 mol/li tre),  we use a~ = 1.0, ct2= a3 = 0-01, and g =4.  The 
system was studied for a large range of  parameter  values around the basal values. 

Results 

It is clear from eqn (4) that as P increases from zero to infinity, the free operator 
regions decrease from 1 to 1/(1 + y). Transcription of  the wild-type strain is 90% 
inhibited at large values of  endproduct  concentration. "Super-repressing" strains 
(for which y > 10) will show even more inhibition, and "loose-binding" strains (for 
which y < 10) will show noticeably incomplete inhibition even at large endproduct  
concentrations. We now discuss results of  the variation of  different parameters on 
the system. 
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(A)  B E H A V I O U R  O F  T H E  S Y S T E M  F O R  g = 0  

When g = 0 the system never loses its stability, even under  large variations in 
the parameter  values. This is in accord with earlier observations. It was shown by 
Bliss et al. (1982) and Tyson (1983) that introduction of  g destabilizes the system 
in these ranges of  parameter  values. In our model,  the search was done for 
0.001 < a~, a2, a3 < 10, 1 < n < 10 for 3' up to 106 varying one parameter  at a time 
and keeping the others at basal values. Equation (11) was not satisfied in this range. 
It is thus clear that for an operon to be unstable for realistic parameter  values, g 
must be greater than zero. Note that Tyson's  model (1983) had stable steady-state 
for n > 208 (!) for g = 0 for same parameter  values. Tyson & Othmer  (1978) in their 
model (with different kinetics of  the repression process) find instability for low 
values of  n (i.e., n --- 8), but under  the stringent condition of  a~ = a_, = a3. They also 
note that for unequal parameters ,  the minimum value of  n necessary for instability 
increases dramatically.  

(B) B E H A V I O U R  O F  T H E  S Y S T E M  F O R  g > 0  

( i) Norma l  operon 

For normal values of  the parameters,  condition (11) is never satisfied, so the 
normal operon is always stable in nature. Table 1 gives results of  the study of  the 
strain having wild-type 3' value (i.e., 3' = 10), but under  different values of  a~, a2 
and a3. For both lower and higher values of  g (g = 1 and 5) the operon is mostly 
stable, except when 0.01 < a 2 <  0.05 for g = 5. This shows that increasing a2 can 
destabilize the normal operon for reasonable values of  g. 

It was also shown by Tyson (1983) that in his model the operon corresponding 
to our wild-type operon (n = 2, g = 4) is stable. Direct comparison with earlier results 
is not straightforward since they differ in their underlying mechanisms. 

TABLE 1 
Effect o f  n, a t ,  a2 and a3 on the stability o f  the normal  
and super-repressor strains. The basal values o f  the para- 

meters are n =2,  a~ = 1, t~2=0.01, a3 =0-01 

B i f u r c a t i o n  va lue  
P a r a m e t e r  c h a n g e d  3' g ( r a n g e )  

I < n < 5  10 1 ,5  nil 

0 .001 < oq < 20 10 1, 5 nil 
100 5 0-I  < a t  < 0 . 5  

0.001 < ot 2 < 10 10 1 nil 
5 0.01 < or2 < 0 .05  

100 3 0 .001 < a 3 < 0 . 0 1  

0-001 < ~3 < 10 10 1, 5 nil 
100 3 0 '01  < or3 < 0 . 1  
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( ii) Strains with altered repressor-operator binding 
In the first part of this section we saw that the normal (or wild-type) operon is 

generally stable. Under similar conditions the loose-binding strains ( y <  10) also 
remained stable. But the system showed the possibility of losing stability through 
a Hopf bifurcation for the super-repressing strains. Figure 1 shows the bifurcation 
loci (in g-7  parameter space) for normal and high values of co-operativity of 
repression. The other parameters were kept at the basal values. This locus is drawn 
using eqns (11) and (7c). Systems residing above the loci are unstable and the ones 
below are stable. It is clear that changing n does not make a significant difference 
in the shape of the locus. It is also clear that for the bifurcation to occur at normal 
values of g (i.e., g=4) ,  the strain should be super-repressing (7~29).  In short, 
instability can take place for wild-type and loose-binding strains as well, if they 
possess high demand for endproduct utilization. Figure 2a-c shows the temporal 
behaviour of the normal strain (y = 10) for normal and higher values of endproduct 
utilization (g). The system evolves to the stable steady-state exponentially (Fig. 2a) 
and with damped oscillation (Fig. 2b) when g = 4  and g =  10. But for g =  12, the 
system shows a stable periodic pattern of synthesis (Fig. 2c). Table 1 also shows 
that instability can be obtained for lower than normal values of g and altered values 
of a 's for super-repressing strains. 

( iii ) Bistability 
Having determined the bifurcation locus in the g-7  plane, we simulated the 

system around the critical parameter set to observe the temporal pattern of the 
system. The system was integrated close to the steady-state and the stability of the 

ii °=2 

n=4 

I0 
0 2 4 6 8 I0 12 14 16 

g 

FIG. 1. Bifurcation locus in g -  y parameter space for n = 2 and 4. The other parameters were kept 
at the basal values, i.e., a~ = i, a2=0.01 ,  a3=0"01. 
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FIG. 2. Behaviour o f  the normal  (7 = 10) operon at g = 4 (a), g = tO (b) , g = 12 (c) showing stable, 

damped and periodic pattern of endproduct synthesis on perturbation, Here n = 2. 

steady-state was obtained from the corresponding eigenvalues of  the linearized 
system. It was observed that this system shows bistability close to the bifurcation 
value at stable steady-states. There is coexistence of  a stable steady-state and a limit 
cycle for the same parameter  values. 

It is known from Fig. 1 that the bifurcation value of  y for g = 3 is between 55 
and 60. We made an exhaustive numerical search of  the system behaviour around 
the bifurcation value to describe the phenomena of  bistability. The steady-states for 
the values of  y studied were almost constant, except for $ being marginally dependent  
on y (~ decreased from 2-02 to 1.08, ff being 0-03, and .)7 changing from 3-01 to 
3.02 when y increased from 40 to 60). The eigenvalues consisted of  one real negative 
and pair of complex conjugate roots whose real part decreased when 7 was changed 
from 40 to 55 and became positive when 3 '=60.  The imaginary part was finite. 
Figure 3a shows the time evolution of  z at 7 = 40 when perturbed. The steady-state 
was globally attracting here. A pair of stable and unstable limit cycles appeared as 
1/was increased. 1' = 45 in Fig. 3b and c shows the bistable behaviour where although 
the system is attracted towards the stable steady-state in an oscillatory manner  (Fig. 
3b) when perturbed close, it also evolved to a limit cycle (Fig. 3c) when the 
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FIG. 3. Bistabi l i ty studies in a super-repressing strain. (a) 7 = 4 0 ,  (b) 7 = 4 5 ,  z = 15, (c) 7 = 4 5 ,  z =22 ,  
(d)  7 = 50, z = 4, (e) 7 = 50, z = 5, ( f )  3' = 60. The other  parameters were kept  at the basal value and the 
respective steady state values o f  x and y were used. 
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perturbation was stronger. On increasing the value of 3/ (3"= 50), the region of 
attraction became smaller, i.e., the size of the unstable limit cycle reduced with 
small reduction in the time period and amplitude of the stable oscillation (see Fig. 
3d and e). At 3' = 55, the unstable limit cycle had almost collapsed to the stable 
steady-state; real A is a very small negative number (~ 10 -4 here), keeping the stable 
limit cycle intact. When perturbed very close to the steady-state, it oscillated with 
an amplitude of 0.014 (in z) for more than 5000 time units without showing any 
indication of asymptoting to the stable limit cycle. For 3' = 60 the steady-state is 
unstable and the system evolves to the limit cycle of period, approximately 119 
units, and an amplitude of 24.4 units (Fig. 3f). The above behaviour of the system 
around the bifurcation value, clearly shows that the system loses its stability through 
a Hopf bifurcation of subcritical type, since the system loses its stability through 
the disappearance of an unstable limit cycle. On increasing 3" further, the limit cycle 
disappears and the system spirals out of the steady-state. In fact, from eqn (6) it is 
clear that, as z (T)~  0, the system becomes unbounded. To ensure the existence of 
a limit cycle, whenever the steady-state is unstable, "g"  may be replaced with a 
hyperbolic (Michaelis-Menten) function of z. 

Discussion 

In this study we have formulated a general model for the bacterial repressible 
operon system which can describe the behaviour of super-repressing and loose- 
binding strains. We have shown that even a simple genetic control circuit with a 
single negative feedback loop is capable of showing bistable behaviour under realistic 
parameter values. We have shown that though the wild-type strain is always stable, 
it can be made unstable by changing other parameters, for example by increasing 
the rate of utilization of the end-product or by increasing the stability of the 
endproduct. 

As stated before, the earlier models of the repressible operon (Goodwin, 1966; 
Tyson & Othmer, 1978) simplified the repression mechanism and also did not 
consider the endproduct utilization as an important parameter. Later (Bliss et al., 
1982; Tyson, 1983) similar models were used to describe the behaviour of the trp 
operon where the repression process is actually repressor-mediated. Though these 
models used the simplified repression mechanism, they took into account the 
feedback inhibition of enzyme activity in the tryptophan metabolic pathway and 
time delays in the transcription and translation processes. They showed (both 
theoretically and experimentally) that the stable normal operon loses stability if the 
feedback inhibition of the enzyme activity is reduced. Later, Tyson (1983) simplified 
the model and showed that instability can occur at normal parameter values without 
considering the time delays and enzyme inhibition--the endproduct utilization term 
is sufficient to induce oscillations. 

The existence of bistability in our model is interesting from the point of view of 
its functional implications. Analogous situations have been observed in chemical 
reactions in continuously-stirred-flow-reactors (Epstein et al., 1981; Papsin et ai. 
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1981; Dateo et al., 1982, Alamgir et al., 1983). Its advantage in a living cell may 
have some consideration of regulating its behaviour against changes in the internal 
pool size due to external stimuli. The fact that a variety of behaviour such as stable, 
bistable and periodic pattern of synthesis of the endproduct can be achieved by 
varying a control parameter, such as the degradation rate of the endproduct, points 
towards the possibility that if such a parameter is developmentally regulated or if 
the parameter changes with the life cycle of the organism, then the operon expression 
can also change its pattern. This could be one of the possible mechanisms which 
regulate differential expression of genes; however, such a pattern has not been seen 
experimentally yet. 

Our model can also be used to study the unlinked operon systems in a cell 
controlled by the same repressor and endproduct such as the trp repressor of E. coil 
(Kelley & Yanofsky, 1982). In such cases, the same active repressor (i.e., Ks being 
the same) binds to different operons with different Ko leading to different functional 
responses of those operons to the same concentration of endproduct (Kelley & 
Yanofsky, 1982). 

In the last few years, isolation of many mutant strains possessing the required 
properties have given the possibility of testing the results of our model. Biochemical 
and mutational studies of tryptophan repressor-operator interaction (Kelley & 
Yanofsky, 1985) have yielded a number of trp repressor gene mutants giving rise 
to both super-repressing and loose-binding properties. They report of strains where 
the trp repressor protein has been altered in such a way that only the repressor- 
operator interaction is altered without affecting the endproduct-free repressor inter- 
actions. Tryptophanase ( - )  mutants (altered a3) are also available (Aiba et al., 
1982). To offer a measure of translational control, mRNAs of different stabilities 
(different al) are known (Britz & Demain, 1985). The parameter "g"  can be altered 
by changing the level of charged t-RNA for the respective amino acids in the cell. 
Construction of strains incorporating the necessary mutations can allow us to 
examine the mathematical results of this model. 

We thank the referees for suggestions which have substantially improved this paper. We 
also thank Mr. Mohan Kumar and Mr. Giridharan for their secretarial help. 
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