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Abstract. - Bound-state eigenfunctions for a (classically) nonintegrable two degrees of freedom 
Hamiltonian system are studied. Between the de Broglie wavelength and a localization length, 
the probability density has a statistically fractal structure in some eigenstates. This novel 
characterization of eigenstates is intrinsically basis-set and coordinate independent and might 
therefore provide an objective approach to the question of quantum-chaotic behaviour. 

A major concern in studying eigenfunctions of systems, which in the classical limit are 
nonintegrable, is in establishing whether or not a quantum chaos [ l ]  may be associated with 
some states (e.g., those that form the irregular spectrum [2]). The expectation is that 
quantum chaotic wave functions have a host of irregular properties and conjectures related 
variously to the irregularity of nodal patterns [3], Wigner distributions [41, correlation 
functions of operators [5] and decompositions in Hilbert spaces [61. The semi-classical limit 
for regular and irregular wave functions was studied in detail by Berry [7], who pointed out 
that as h-, 0, the morphology is different for the two kinds of wave functions. In particular, 
chaotic wave functions are expected to have a random pattern of amplitude fluctuations. 

In characterizing disordered materials (such as the percolation cluster a t  the percolation 
threshold [81 or  random particle aggregates [9]), it is common to use the notion of a fractal or 
Hausdorff dimension [lo]. Such characterization has also been made for the (electronic) 
eigenstates of disordered systems like the tight-binding model [ l l ,  121. The fractal 
dimension Df of the probability density in a given eigenstate is defined through 

A(L) = d.; 1 d:’ p(r) p(r + r’) O(L - / r  - r’l) - LDf . (1) 

The notation is ,c(r) = l#(r)12, L is a coordinate length, d s  is a volume element, 8 is the 
Heaviside step function. Note that all possible choices of origin, r, have been averaged over. 

The question we address in this letter is whether such a fractal dimension can be sensibly 
associated with eigenstates of classically nonintegrable systems. A major motivation for this 
enquiry is that such characterization is coordinate independent due to the average over 
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choice of origin, and basis independent, although it is probably not representation 
independent. A second motivation arises from the suggestive similarity of typical chaotic 
eigenfunctions (e.g. , in the stadium problem [13] to random aggregates [9]). Although we do 
not, per se, equate the notion of possible fractality to  possible quantum chaos, the present 
characterization has some advantages, in that it relates only to  scaling properties of 
probability density. (Coordinate or basis-dependent criteria have been criticized in the 
past [141.) Similar connections have recently been explored by Singh and Bhattacharjee [121. 

Eigenfunctions for a typical nonintegrable Hamiltonian with two degrees of 
freedom [3,14, 151 (’), 

H = - V212 + (ax2 + by2)12 - Axy2, (2) 

with a = 1.6, b = 0.9, A = 0.08 and h = 1 are computed. As this problem has a vibrational 
potential, all quasi-bound eigenstates are localized on large enough length scales, 
L, - boundary of the potential. (A superior estimate of L,  is provided by the variance of 
the radius of gyration, (r2p(r))  - ( r,c(r))2). Beyond L,,, all eigenfunctions decay 
exponentially, so for L > L,, states are compact and Df - 0. A lower limit is set by the de 
Broglie wavelength, k = hlp, below which the wave function is smooth, so for L < X , the 
fractal dimension is merely the embedding Euclidean dimension, which is 2 in this case. 

We are, therefore, constrained to work in the range 3; < L < L,. In polar coordinates, 
x = r cos 8, y = T sin 8, eq. (1) becomes 

2- L 2- 

As is well known, an infinite hierarchy of such dimensions can be defined [61, and may prove 
useful in a complete characterization of irregularity in wave functions. Note that the fractal 
dimension Df defined in eq. (3) is similar (but not identical) to the correlation dimension Dz of 
Hentschel and Procaccia [16]. 
Df can be deduced from a graph of lnA(L) vs. 1nL. Shown in fig. 1 are such plots for 

selected individual eigenstates; the system (2) has about 140 bound levels and we include 
results for illustrative cases (’). The integrals in eq. (3) were evaluated using a Monte Carlo 
procedure. Uniform sampling of r, 8 and 8’ is straightforward t o  implement, but that of r’ 
requires some care to ensure that A(L) is uniformly accurate over the entire range of L 
(seven .ecades., which is approximately three decades, in this study). The confidence level 
( 3 ~ )  is 98%. We also plot the slope itself us. In L in fig. 1 to help identify fractal behaviour. In 
going from L < A  to L>L,,, there are essentially two possibilities: the slope can go 
continuously from 2 to  0, as in fig. la), b) ,  or  with an intermediate plateau, as in fig. IC), d) .  
In the latter case, the slope is a constant value (and neither 2 nor 0) over a considerable 
range of L,  indicating fractal behaviour over the relevant intermediate-length scales. This 
fractal region occupies well over 315 of the entire range X < L < L, and compares well with 
the system studied by Soukoulis and Economou [ll]. 

The particular value of Df is a property of the individual eigenstate; the examples shown 
here are typical in that several states of the system show similar behaviour-in particular, 

(l) We diagonalize the Hamiltonian (2) in a basis of the lowest 420 states of the unperturbed 
oscillators. There are slight differences in the eigenvalues above E = 19 (cf. ref. 131). States can be 
given labels n,ny as discussed in [3,141. 

(2) States with low n, (low ny) are the most (least) affected by the coupling; seeU41. 
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Fig. 1. - Plot of lnA(L) us. 1nL (solid line) defined in eq. (3), for four eigenstates of Hamiltonian (2). 
The eigenvalues are also indicated: a) state 1, E = 1.1058; b) state 84, E = 18.7767; c )  state 87, 
E = 19.2639; d )  state 133, E = 23.8214. The slope of lnA(L) vs. In 1 is also plotted (dashed line), to show 
its variation from 2 below the de Broglie wavelength (marked 1) to 0 at large L. 

those that are involved in avoided crossings[l5]. However, state 87, in fig. IC), can be 
explicitly semi-classically quantized [17], so that a single fractal dimension less than 2 need 
not automatically imply a quantum chaos (see also ref. [12]). 

This naturally leads to two questions. Firstly, eigenstates of (2) are mixed with respect to 
the original harmonic basis, so it is of interest to determine how the eigenstates of integrable 
systems behave under the present analysis. For particular examples, such as rectangle 
billiards, it is simple to show that the leading behaviour in L yields Df = 2. A more general 
statement has not been possible here, although we have numerical evidence that pure states 
typically show a smooth transition from slope 2 to slope 0. 

A second question relates to the paradigm of extreme randomness, viz. the Gaussian 
orthogonal ensemble (GOE) matrices [HI, which have been seen to share several 
(eigenvalue related) properties with possibly quantum-chaotic systems [l]. In order to make 
comparison more direct, we have generated GOE wave functions for this system by 
diagonalizing GOE matrices and using the same basis as  used to diagonalize Hamiltonian (2). 
To get an ensemble average, A(L) was evaluated for the lowest few such eigenfunctions and 
averaged over a sampling of GOE matrices; the result is shown in fig. 2. In  contrast with the 
eigenstates of (21, for GOE wave functions, the lower cut-off scale such as X is not easily 
defined, although they remain localized for large L. The range over which the slope is 
constant is smaller than in fig. le )  or Id); however, the value of Df so obtained is somewhat 
larger. It is not clear that our present procedure is an unambiguous method for constructing 
GOE wave functions. A study of billiard systems such as the stadium, wherein such wave 
functions can be defined more rigorously, will be of value. 
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Fig. 2. - As in fig. 1, for the case of ensemble averaged GOE wave functions. 

There is some reason to expect such scaling behaviour for sufficiently irregular wave 
functions. Berry has defined I71 a -locally averaged)) (denoted by ( )) correlation furletion, 
in the semi-classical limit as 

where d ( r , p )  is the classical phase space density. For the type of system (diagonal kinetic 
energy + potential) considered here for ergodic motions this has a limiting form [71 in terms 
of Bessel functions. Using these expressions and replacing ,c(r) in eq. (1) by its local average, 
allows the estimate 

(a  and ,$ constants) for L,,, >> L >> A .  These estimates are approximate, but if irregular wave 
functions are similar to Gaussian random functions, as has been conjectured, the above 
offers some justification for the empirical observation of D,< 2. 

In summary, here we have shown that over a considerable range, specific eigenfunctions 
of nonintegrable systems show a fractal character. Such a characterization is state-specific, 
but coordinate and basis independent. Although we do not equate a single fractal dimension 
with quantum chaotic character, this may provide a viable approach to a suitable diagnostic 
for quantum chaos [l, 21, in conjunction with other criteria. 

We thank M. BARMA, D. DHAR and V. SINGH for helpful discussions. We are indebted to 
referees of this paper for suggestions that have resulted in significant improvements. 
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