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We report the scaling behaviour of rotational energy transfer moments. The quantum moments exhibit a polynomial scaling 
behaviour in the variable j,(_j, + 1 ), whereas the classical moments scale as a polynomial in 1 f , where j, is the initial rotational 
quantum number or action. Applications are made to Li:-rare gas collisions, as welpas to a classical planar-rotor collision model. 
The scaling theory allows an accurate interpolation and extrapolation of experimental scattering data. 

1. Introduction 

The correlation of inelastic state-to-state quantities through factorization or scaling laws has proven to be a 
fruitful approach in the study of molecular collisions [ 1,2]. In particular the use of the energy-corrected sudden 
(ECS) scaling law is extremely useful in analysing elementary cross sections or kinetic rates [ 3-51. For aver- 
aged quantities like moments, complementary scaling forms can be deduced through a classical formalism, the 
classical scaling theory (CST) [ 6,7]. In the latter case it can be shown that moments have a polynomial depend- 
ence on quantum numbers (or actions) with expansion coefficients being related to transition probabilities 

[81. 
In this paper we examine the scaling behaviour of moments in rotationally inelastic collisions. Similar studies 

have been performed earlier [ 91 in the somewhat more transparent case of vibrationally inelastic collisions. 
Our intention here is to examine whether the formalism hitherto developed can be successfully carried over to 
the present case. 

In a sense the scaling theory for moments generalizes the sum rules commonly employed in relaxation studies 
[ lo]. The form of dependence of moments on initial quantum numbers has important implications; a linear 
dependence, for instance, guarantees exponential decay to equilibrium for vibrational inelasticity. Rotational 
moments are typically strongly non-linear functions of the initial rotor state [ 111; however, the question here 
is whether they can be suitably expressed in polynomial form, which then conveniently allows for accurate 
interpolation and extrapolation. 

The scaling theory is briefly discussed in section 2, and the correct form for polynomial scaling of classical 
and quantum moments is derived. We also attempt to justify these scaling forms on a purely quantum mechan- 
ical basis, using the ECS theory for rotational processes. 

In order to verify the scaling behaviour, we consider two approaches. By using the ECS theory along with a 
power-gap law [ 121, it is possible to generate kinetic rates for all processes in a given system, and thereby obtain 
moments. We then examine the validity of scaling for the synthesized moments. A purely classical study is also 
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made using a classical planar collision model [ 131, wherein moments are generated and the scaling behaviour 
is confirmed. These studies are presented in section 3, where we treat the cases of LiZ-rare gas [ 141 collisions, 
as well as the classical model of scattering. This is followed by a discussion and summary. 

2. Theoretical background 

2.1. Classical scaling 

It is most convenient to work in action-angle variables in setting up the collision problem. We assume for 
simplicity, the case of a rigid rotor colliding with a structureless partner. The Hamiltonian is given by [ 13 I 

H(P, R, j, q,) =P212,u+ V(R, q,) +Bj2 +1212pR2, (la) 

where 

V(R,q,)=(l/R”-2/R6)(1+a, cosq,+3a2cos2q,/2). (lb) 

P and R are the momentum and coordinate for translational degree of freedom (with reduced mass P) and j 
and q, are the action-angle variables for rotational degree of freedom. B is the rotational constant for the rotor 
and 1 is the orbital angular momentum. The action variable j is the classical counterpart of the rotational quan- 
tum number. Since the interaction potential (a, and a2 are anisotropy parameters) V-0 as R-+m, the rotor 
energy is constant before and after the collision. The net change in energy is given by 

AE(ji)=B(jf-jf), (2) 

where ji and j, are the initial and final rotational actions, and ( ) denotes an average over all angle variables 
and orbital angular momenta. Through the classical scaling formalism, this change is given by a functional of 
the Liouville operator [ 71 

A E(j,) = G,?( { u); initial actions) (3) 

and can be Taylor expanded in the initial rotor action to give a polynomial scaling form. Note that here the 
symmetry in j in the Hamiltonian (1) requires that only even powers in j be included in the expansion, and we 
therefore have 

AE(j,Ek)=a!o+cx1j2+o!2P+..., (4) 

where Ek is the kinetic energy of the collision. On the other hand, the angular momentum change 
A L(ji, Ek) = (jf- ji) is given by polynomial expansion in j, itself. 

While eq. (4) is the proper form for scaling the classical energy transfer moment, note that the quantum j2 
operator has eigenvalue j(j+ 1). Thus, in taking over eq. (4) to the quantum case, the correct scaling form for 
the quantum moment would be expected to be 

AE(j,ErJ=&0+~i,j(j+1)+b2j*(j+1)2+.... (5) 

The right-hand side can, of course, be rewritten as a series in j itself. This highlights a basic difference in the 
classical and quantum scaling forms, and will be borne out in the examples studied in section 3 below. 

2.2. Quanta1 formalism 

Recall the ECS form for inelastic cross sections [ I] 
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I+J 

bl+JtEk)=(2j+1) 1 t2L+1) 
L=,-J 

’ IA~120L_o(&), 

which relates deexcitation cross sections cr r_J at the same initial kinetic energy Ek to a basic set, G~_~. In eq. (6) 
( b 6 i) is a 3-j symbol, and At is an adiabaticity factor [ 11. A similar formula holds for rates k,, as well. A 
weighted energy transfer rate from initial state j, can be defined at temperature T as 

m(jl)= 1 kJ,,,(T)(eJ,-El,), 
IF 

(7) 

where e, = J3j( j+ 1). Rewriting eq. (7) as a sum of excitations and deexcitations, and using eq. (6)) one has 

2J,+6 

AI?( C B(S2+S+2j,S)(2j,+l) 1 (2L+l) 
> 

2 

6=1 L=6 

-~~l~(a2-s-2j,6)(2j,+l-26)2~~~(2L+I) (‘d ‘d-’ ;)’ I&12kL_,,(T), (8) 

where the summation index 6 relates to the quantum number difference between the final and the initial rota- 
tional state. 

Although it is suggestive, in that the leading term is of order jf , it is not clear whether this leads to a polyno- 
mial law in j, or jf , in contrast to the vibrational case where similar analysis was more transparent. One problem 
is that 3-j symbols cannot easily be approximated in polynomial form; in a semiclassical approximation by 
using the Stirlings formula, they reduce (for high enough ji and L) to 

($ ;kd I$ =(2j,+G+L+l)-‘. (9) 

However, this does not simplify eq. ( 8)) or further help in making contact with eq. ( 5). 
In arriving at a justification for eq. ( 5)) it is more helpful to use empirical or semi-empirical fitting laws [ 151, 

k J,_Jf~ ( AEl -” _ lj: -jf I +‘_Aj-“. (10) 

For small A j and not too small j,, v = 1. Inserting eq. (10) in eq. ( 7), it is clear that a polynomial law in j, results. 
The contribution to the coefficients of j: from excitations is proportional to 

,ga (- l)njn-’ exp( -At,,,lkT). (11) 

The exponential factor makes coefficients of large powers of j, negligible. The contribution to coefficients of j: 
from deexcitations goes as ( - 1 )“ZJ cJ, (l/jn+ ’ ), and clearly decreases with increasing n. So the coefficients get 
progressively smaller, and the series is likely to be convergent. Alternately, in the adiabatic limit, with A k = 1 in 
eq. (6), and using [ 161 k,,,- [ L( L+ 1 )] -I, eq. (8) can be shown to reduce to a polynomial in j,. 

This allows, at a heuristic level at least, for a justification of a polynomial type scaling form for quantum 
mechanical RET moments as well. It is of interest to note that coefficients of both even and odd powers of ji 
appear in the scaling form when the empirical law, eq. ( 10) is used, in accordance with eq. ( 5). 
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Fig. 1. Quantum number dependence of the rotational energy 

-3 ’ I I I I transfer for the case of Li: colliding with (a) Ne, (b) Ar and (c) 
0 20 40 60 80 100 Xe. B(j) is in units of lo-” cm3 eV SK’. All relevant parame- 

Ji ters were taken from ref. [ 141. 

3. Results 

The ECS-P law introduced by Pritchard and co-workers [ 121 combines the ECS scaling theory, and a fit of 
the basic rates k,,, (or cross sections) to a power law, modified by an exponentially decreasing term, 

k,,,=a[L(L+ l)]-’ exp[ - (IJL*)‘], (12) 
where a, y and L* are fitting parameters. Using eq. (12), it is possible to generate moments from any initial 
state j,. For Li:-rare gas the necessary parameters are given in ref. [ 141, and the moments can be easily synthe- 
sized using kL_o generated using the ECS-P law. These are plotted in fig. 1, where it can be seen that the general 
trend in all systems is similar. As j, increases there are two opposing effects in operation: the number of lower 
levels available for transitions increases, but k,l _,, +6 - S - ’ and this decreases with increasing 6. Thus, as j 
increases, the RET does not change significantly. This is in accord with results from purely classical studies 

Il71. 
We investigate the scaling behavior of the RET moment as a polynomial in j(j+ 1) (or equivalently j) and 

Table 1 
Convergence behaviour of scaling coefftcients (Y, and 6, in the LiF-Ne system. The parameters used in eq. (10) are: ~~40, y =0.87, 
L*=36 

2 

4 

6 

a 

10 

12 

14 

16 

1.4849 

1.4467 

1.3872 

1.3076 

1.209 1 

1.0939 

0.9641 

0.8223 

1.4849 
1.4849 
1.4976 
1.5012 
1.4980 
1.5013 
1.4982 
1.5013 
1.4982 
1.5013 
1.4983 
1.5013 
1.4984 
1.5013 
1.4984 
1.5013 

-0.3183( -2) 
-0.2728( -2) 
-0.3315(-2) 
-0.2748( -2) 
-0.3367( -2) 
-0.2744( -2) 
-0.3397( -2) 
-0.2743( -2) 
-0.3417( -2) 
-0.2743( -2) 
--0.3431(-2) 
-0.2743( -2) 
-0.3442( -2) 
-0.2743( -2) 

0.6605( -5) 
0.7441(-6) 
0.1031(-4) 
0.5299( -6) 
0.1284( -4) 
0.4193( -6) 
0.1465(-4) 
0.4193( -6) 
0.1600( -4) 
0.4667( -6) 
0.1705(-4) 
0.4496( -6) 

-0.6619( -7) 
0.3730( -8) 

-0.1357( -6) 
0.4817(-8) 

-0.1357(-6) 
0.4817(-8) 

-0.2470( -6) 
0.5596( -8) 

-0.2893( -6) 
0.6186( -8) 

0.5788( -9) 
-0.2421(-10) 

0.1393(-9) 
-0.2421(-10) 

0.2250( -8) 
-0.3565(- 10) 

0.3069( -8) 
-0.4562( - 10) 

‘) Rotational quantum number. b, Energy transfer moment from state] (in units of eV) 
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Table 2 
Comparison of exact and predicted quantum RET moments (in units of eV) for the Li:-Ne system, using eq. (5) 

i Exact Scaled J Exact Scaled 

4 1.4467 1.4498 54 - 1.5701 - 1.5705 
14 0.9641 0.9635 64 - 1.8084 - 1.8076 
24 0.1888 0.1892 74 - 1.9351 - 1.9374 
34 -0.5798 -0.5800 84 - 1.98789 - 1.9768 
44 - 1.1736 -1.1733 94 - 1.9932 -2.0841 

j2, following procedures described earlier [ 91. Shown in table 1 is the convergence behaviour of the scaling 
coefficients using eqs. (4) and ( 5). It is important to note that the coefficients 6, converge much faster than 
(II,. Further the coefficients of increasing order fall off more rapidly in j(j+ 1) scaling than in j2 scaling. It is 
thus evident that the use of the ju+ 1) scaling form, eq. (5), is superior to eq. (4). 

Having determined the scaling coefficients from a small set of input moments, it is possible to use these to 
predict moments from arbitrary initial states. In table 2 is shown the predictive accuracy of the j(.j+ 1) scaling 
form, for the case of the Li;-Ne system. It can be seen that over a wide range of j, the scaling form yields 
accurate results especially when used for interpolation. 

The classical energy transfer can be directly computed by integrating Hamilton’s equations deriving from the 
Hamiltonian (1). Since the orbital angular momentum is also a parameter in the problem, we have chosen to 
scale the (partial) RET moment at each value of I separately. The parameters chosen in the example in table 3 
were a, = 0.0, initial momentum P, = 15, and I= 0. The scaling coefficients generated by j(j+ 1) and j2 scaling 
forms are shown. Clearly in the latter case, the coefficients converge more rapidly to a steady value, and also 
fall off faster with increasing order. This indicates that j2 scaling is more appropriate than j(j+ 1) scaling in 
contrast to the quantum case, shown in table 1. 

In the classical case both interpolation and extrapolation work extremely well, and in fact with only two input 
moments - a quadratic in j - the entire range can be predicted. Some representative results, for I= 12.0, a, =O.O, 
and initial relative momentum P, = 15, are given in table 4. 

Table 3 
Convergence behaviour of scaling coefficients (Y, and d, for the classtcal planar-rotor collision model, at fixed orbital angular momentum 
I=0 

10 5.0499 5.0499 
5.0499 

20 3.3781 5.607 1 
5.643 1 

30 0.5958 5.6075 
5.6395 

40 - 3.2923 5.6076 
5.6379 

50 - 8.2830 5.6076 
5.6369 

60 - 14.3757 5.6076 
5.6363 

- 0.0055 
-0.0054 
-0.0055 
-0.0054 
-0.0055 
-0.0053 
- 0.0055 
-0.0053 
-0.0055 
-0.0053 

O.lOlO( -7) 
-0.7631(-7) 

0.1147( -7) -0.1167(-11) 
-0.1328(-6) 0.3870( - 10) 

0.1147(-7) -0.1107(-11) -0.2031(-16) 
-0.1725(-6) 0.8063( - 10) -0.1353(-13) 

0.1147(-7) -0.8227( - 12) -0.1729(-15) 
-0.2011(-6) 0.1175(-9) -0.3272( - 13) 

a) Rotational quantum number. b’ Energy transfer moments from state J (reduced units). 
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Table 4 
Comparison of exact and predicted classical RET (partial) at fixed orbital angular momentum I= 12 

J Exact Scaled J Exact Scaled 

10 -0.0071 -0.0071 40 - 0.6067 - 0.6066 
20 -0.0647 -0.0647 50 - 1.1832 - 1.1836 
30 -0.2437 -0.2439 60 - 1.9696 - 1.9650 

4. Discussion 

This study has focused on the application of the classical scaling formalism to the case of rotationally inelastic 
collisions, as a natural extension of previous studies on vibrational processes. Whereas quantum scaling theo- 
ries treat elementary cross sections or kinetic rates, classical scaling applies mainly for averaged quantities. 
However, it is possible to deduce the scaling principle that applies to both quantum and classical moments. In 
the present case, these are not identical: quanta1 energy transfer moments scale properly as a polynomial in the 
variable j(j+ 1) whereas the corresponding classical moments scale in j’, where j is the rotational quantum 
number. 

In contrast to the vibrational cases studied earlier, it has not been possible to make correspondence between 
classical scaling coefficients and quantum transition probabilities. Thus, although one can obtain evidence for 
scaling behaviour, it is not entirely clear as to what the coefficients signify. At the same time the predictive 
accuracy is excellent, which further underscores the utility of scaling forms as a means of extending scattering 
data. 
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