
I. Introduction moments is usually far smaller than the number of. 
significant transitions, which makes the problem 

A problem of continuing interest is the de- underdetermined. Extra constraints can be incor- 
termination of quantum information, e-g_ state-to- porated [S] in the form of -an entropy _maximiza- 
stat& trztion probabilities, from a classical treat-. tion principle This was fit implementkd -by_ 

ment of molecular ~colhsion processes. Various Truhlar and co-workers [S] in the study of a. colhn-: 
methods (l-81 have been suggested for- this pur- car He-H2 collision, wherein V-T en,er&y transfer 

pose in the past few ye&s. These methods can be moments were used_ Cohrin’and Marks [6] intro- . . 1 
distingrished as those that directly obtain transi- dueed a- cross-&relation ‘moment analysis: cIassG 
tion probabilities such as the quasidassical histo- cal moments .from low initial states were directly . ~~ 
gmn [I]. continuous quat&ation [2], semiclassical expressed in terms of tgnsitioti protiabilitia. and 
wave packet [3] or classical S-matrix [4] methods, the inversion was effected by solving sets of linear 
and those that attempt to invert (5-91 averaged equations_- A third method; suggested _earlier bye us : 
classical information, such as moments, and are [9]. proceeds along entirely different lines: We fit 
thus indirect_ The rationale behind the latter meth- employ a c&s&al scaling theory (GST) .[ll] -tom 
ods [5-g] is that often classical mechanics is likely express the variation of then moments with the -’ 
to be more accurate (when eompared with correct -__ initial states of -the molecule Tfhis resuhs, in a -~ 
quairtal results) for phase-averaged quantities [lo]. po!ynomiai expression in the initial quantum num- -1 

In this paper we study the problem of collin- ._ .bers (or actions) qf the problem- The 
early colliding diatomic molecules_ Our intention = classical~quantum equivalence of moments is in- : 

is to obtain transition .probabil&s for the prin- vokedand the scaling coefficients are expressed in 
cipal inelastic pmcesses by-implementing the.(indi- _ terms of transition probabiIi&s_ This is made pos- 
rect) classical methodsof moment inversion using sible by the use of a quantaI scaling theory [12], 
energy transfer and cross correlation moments viz_: the ener&axxcted sudden (ECS) theory- ~ 

There are essentially three methods [5-g] that Under suitable approximations a viable inversion 

expioit the cksical-quantum equality of m3 procedure~results. 

merits_ If fall moments are .known exactly; their ~_ ‘Es paper is divided in four pai-&_ The rn13ei -.. 

inversion to obtain ~transition_, probabilities is and relevant details .of the cIassi&. and quantum. : 
unique_ However; the number of accura te ch+s&aI --. scaling theories -are described in section_. _,..“e _ 
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methodoIw of the present scaling-based invcr- -- (12) ox@ are presented in section 3. For conveni- 
sion and the ap$.ications of ail three inversion _ ~izrxe, we have restricted the _apphcations to 
methods to vtious diatom-diatom collision sys- :harmonic systems A dkussion and summary fol- 

tems (for which be&mark quantal cakuIations lows in section 4. 
: .~ _ 

2 I_ M&t and scaling 

The collinear system of two diatomic tnokcules (AB + CD) studied here has been described earlier 1141. 
The classical hatnihonian is given in reduced units by (in usual notation) 

Ii=a’P’/2mtpf/2+ V,(q,)ipat V,(o&+exp[--Rta(q, +#lq2)]_ (1) 

Allenergiesaremeasur ed ia units &+&a: OAu is the frequency of AB and O, is the ratio ~c&~~u_ The 
dassicaf enero,y transfer and cross-correlation moments are defmed as 

(3) 

where J?Z;- E: are the final and EplT E,_ are the initial energies of AB and CD, R,* n2 are the initial 
internal states and 6,. &_ are the m&al -intema.I phase variables respectively; the initial relative kinetic 

energy is denoted EK_ 
For a cohision system with two vibrational modes, the variation of the classical energy transfer moment 

with initial internal states is given by a polynomial function [15] 

It can be shown that the scaling form for M,, is similar, 

Quantum mechanicaliy the two moments ET’ and M,, are given by 

W=- 

(7) 

P’ a*== _=;~-,< EK) is the transition probability for the process nlnz - n;n; at kinetic energy EK_ 



Aj==---n,Ay--n. -._ 

where contributions from V-T pi& ~(the fkst t%te&s),~arid V-V or V-V,T~proces&(third term) 
can be identifiti. ,For id&icaI molecules (di = 1) the resonant energy ~tfansfer ~(A; = -A=) ii extremely 
efficient but its contribution to ET is kero. Thus the snalysis of‘ ET momenti is not likely to yieId_much 
pertinent information and we need to consider the cross-eorreIadon momeut Mu; : ~. 

A,-=1 Al-l A,=1 AZ=1 

- c‘ c A,A,P n,Ix_T -a,+-&_ n,-a2 
A,=1 AZ==1 

(Ed-- c~ c AIAlp”,“L-“,-d,.“z*Bz(Ez;) - ~~ ‘. (9) ._ 
A,=1 AZ=1 I 

The last two terms of eq. (9) are a measure of V-V processes At the same time it is dear that the 
cross-correlation moments do not account for V-T transfer- Thus both the ET and M,, are essential .for 
computing complete state-to-state information_ 

2.L Scaling-based inuersion (SBr) 

The scahng-based inversion (SBI) implements the ECS theory [12] in reducing the number of different 
transition probabilities in eqs_ (8) and (9): 

IC+m-n 
n-l-m 

I>=( m ) and iA=:~~;_~,$&= l_ 

After exIxmding the binomial coefficients, on combining eqs. (10) and (11) with eq. (8) we get 

Similnrly eq_ (9) reduceq to 
.- 
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so that within the framework of the ECS theory, the quanta1 scaling form for the moments is identical to 
the iXX_ -fhe y and 6 coefrcients can thus be expressed iu terms of the principal transition probabilities 
as S&R in table l_ Within the ECS appnxximation. the transition probabilities for other processes can be 
generated from the principril ones. Pij _ m and Pi0 _ oi_ through eqs. (10) and (11). 

2_3_ Orlier inceniotz n~ehxi~ 

For completeness vve review here the essential features of the other inversion methods [5-S]_ The 
cross-correlation moment inversion (CMI) procedure [6) takes advantaSe of eq. (7) and inverts the moments 
Mfil from a &zn state n,rrl to yield the transition probabilities from this state_ For example. if more than 
two quantum chanScs are insiSnificant from initial state ni = 1. n1 = 0 at a &-en kinetic energy E,, then 

pro-n, (E,)= (Wc-&,)/2- (12a) 

There are some difficuitia in using the CM1 method_ Firstly. classical mechanics is less accurate for lower 
initial states but in order to determine P,,, _ii one has to use M&,(1, O)- Secondly_ for higher initial states_ 
the number of sigificant transitious is 1arSe and it is essentiaI to use the hi$rer-order cross-correlation 
moments: these are cons;derably less accurate than the low-order ones_ 7hirdiy- for any transition 
probability- P& _ Nina- a .number of equations can be written (e_.g.. eqs. (12b) and (12~) for P,o_o,)- In 
some cases (S] these equazions 5x-e absurd (ne&ve) results and can be rejected immediately_ A major 
problem is erxountered when the remaininS equations give differin, 0 and/or conflicting results. it is then 
not obvious u-&h equation shodd be preferred- 

The other u-ell-known inversion, the maximization of entropy method (ME&J) [5]_ invokes additional 
constraints_ Within this technique. the inaccurate hi@rer-order moments are unnecezzuy in effecting the 
inversion- Sucocssful applications of this method to atom-diatom systems [5,10) have used only the first 
two moments of energ trnnsfer- Note that the resonant contribution to the ET can be very small (zero for 
U= = I) and therefore it is awessary to use cross-correlation moments_ We have tried various combinations 

(3 

(ii) 

(iii) 

(i4 

(4 

(vi). 

(vii) 

(viii) 

(i.4 



3, Application and resuhs 

Vibrational relaxation in collinear molecular 
collisions is of three types. viz V-T, V-V. and 
V-V,T energy transfer_ In most systems energy 
transfer is quite inefficient; the dominant processes 
involve exchanges -of a few quanta of energy at 
most_ Of importance among these are one-quan- 
tum de-excitations in a single oscillator, and reso- 
nant or near-resonant energy transfers. In the 
present study we have neglected some multiple 
quantum exchanges; the errors inherent in the use 
of classical mechanics are often larger than the 
magnitudes of transition probabilities for such 

proa==- 
The four systems studied here are Nz -I N,, 

Nzt CO, Nz+OC, N2+<x_ An advantage in 
studying these particular model systems is that 
accurate quantum scattering calculations have been 
performed earlier (13]_ These have served as 
benchmarks for other (semiclassical forced-oscilla- 
tor) approximation methods as welI [16]_ In the 
present systems, the lower classical moments are in 
good agreement 1141 with the quantal ones and the 
exact state-to-state transition probabilities follow 
the ECS scaling law reasonably welI - both these 
being implicit prerequisites for the SIX Note that 
the four systems differ ConsiderabIy in o, which 
ranges from 1 for Nz + Nz to 0.67 for Nz + 02, 
and thus represent a sufficiently wide range of 
model diatom-diatom systems When o, is close 
to 1 the resonant processes ij-i&-l, jr1 are 
highly .favort?& whereas one-quantum de-cxcita-. 
tion in the CD molecule is the major process for or 
much different from 1:. 

The fmt step in the determination of the state- 
to-state transition probabilities through the SBI is 
the computation of scaling coefficients_ This is 

-- ._. 
-. . . -. 

RBhagmsi& 7xmy. / scnling lheory for c1m-d mDmcn rsin&-aI~-&~r.om~*~- -.: _ 7-m-- ._ 

of cross-correlation and energg transfer moments .and: found that the most re&mable~. ,es&nat& of _ 
transition probabilities are provided by ET; ET’ and Mt, 

_ 
as threeconstraints in maxtnizing the entropy,; I; 

S. This leads to the condition ~, .~. ._ 

dS = 0 = -L k 2 (In P& + Z + zE,& f ZE,& + &&)d P,++ 
XZi.82: 

-p.~ 
: -. 

where PPinl rev==n~ P&, -niIli and ii, 5. 5 and dare the Lagrange multipliers [5]_. _ .__ __ 

achieved via thti prescription given in ref_ 1151; 
classical moments for various initizl states are -. 
calculated by. the standard procedure [l] and are 
used as inputs to generate the scaIing coefficients 
[9,15]__ We. restrict ourselves to a ma+mum of 3 ._ 
initial states for purposes of expediency_ The lower 
coefticients which pertain to the low-quantum -. 
transitions are then reasonably well converged. In 
all four systems it is found that yi,Jy=, &,/& > 

103and Y~YX,, S&_& > 10’ .Sin~ ymo, S,, rep- 
resent the magnitude of 110 + On’ processes it is~ 
reasonable to assume that all the transitions in- 
volving more than two-quantum changes in z&y of 
the molecules are negligible [Xi]. However, the 
problem is still underdetermined as the number of 
allowed transitions is greater than the number of 
available coefficients An analysis of the sign and 
magnitude of various coefficients is necessary in 
order to decide how best to implement the inver- 
sion procedure_ Such analysis, in all four Casey, led 
to consideration onIy of processes (except resonant 
ones) involving Iess than twoquantum changesin 
any one of the molecules_ For example, fin the 
Nz + Nz system at E, = 225, 

y,= -0x4(-7)= -Pp,_,-05 Pm_ol* (14) 

S,= -O-742(--3)= -P,_o,-2 P20_e_ (15) 

Since S, B ym and all transition probability t& 

bare the same sign, it is evident that Pm_oz B. m. 
P m4mor Pm2-oi- We now have a set-of equations 
which can be inverted to give the transition prob. 
abilities at a given kinetic ener= EK: 

s, = --2o,P,,tr_, 06) mu 

s,, =- -2qPQ~,200, 07) ~- 

S,,= --0,3,,;,,1--qPix,_,,~, 

S,, = -~o,P*,_ro-2U\,Poz_~, 

-- J18) ‘- 

. . _’ (19) 1 
: 



Yco=~,~oo-~~+Pi-,o- (20) P*o _& EL + 1) SimiIarly these can bc used to 

701 = ~&o-o, - ~,p,,-, +(1- ~,)P,,-1, 
give Por_,(EL+ 20,) and Pio_,(EL+2). and 
so on_ 

+(1 -b’t)&_r#j* (21) In the symmetric Na + Nz system the magni- 

Y10- r*)-OL-- -P P tude of aII other transitions is much Iower than 
IO--a, -(L -%)Plo-ol 

+(I - c;%o-oz- 
lO-+OO. lO+Ol.and 20-02 The lo-01 pro- 

(22) ccss is = 100 times mote efficient than the one- 

All the re5oIlaIlt transiti probabiities of illterest quantum de-excitation- In fact the resonant 

can be computed from 6 coefFicienta [eqs. processes dominate to an extent such that even the 

(17&(21)1, and one-quantum V-T transition prob- magnitude of 20 - 02 transitions is 25 times Iv-er 

abilities From the y coefficient At low energies than that for 10 - OO_ Computations From various 

and when o,= 1, y&he ET from nr_ zz2 = 0) is methods on this system (results are presented in 

usuaIIy negative_ In such :zases eq_ (20) cannot be table 2) show that the SBI is able to account 

used_ We therefore determined PO1 _ m and P,. _ (,, properly for this propensity somewhat more accu- 

via eqs_ (21) and (22). Mote that there are two rately than the CM1 and MEM methods Unlike 

equations and four unknowns (Pol_m~ Plo_m. the CM1 and MEM the SBI does not require the 

PO0 -ox- P&N-IO)- But Poo_oor(E,) and higher &ikl_ The scaling [II] works eFficientIy at 

Pa,,-u,(G) are ako p,,-,(E, - er) and 
higher energies and so does the SBL The agree- 

pro -oo(& - 1) mspectbeIy_ The one-quantum merit with quantal results is progressively better as 

transition probabilities may be determined by the total energy of the system in- as can be 

step=ise computations via eq~ (21) and (22); pro XeAZillfig-l_ 

ceeding higher in initial kketic energy by steps of These propensities are largely reversed in the 

o, and 1 respectiveIy fr@n some sufficiently Iow 

N 
t + 0, system (u, = 0.67) where 01 - 00 is more 

energy. say E,, at which Poo_ol and Pm _,. can efticient than near-resonant pnxesses However, 

be ignored in comparison with PO1 _,,,, and PI0 _ ,,,,_ the 10 -00 process is much less efficient than 

Tk Pot_m(EL) and Pu,_oo(~r) computed via 01 - 00 since it involves a largx energy transfer_ 

eqs_ (21) and (22) wiI1 now serve as inputs The ET moment from state or = 0. n2 = 0 (yoo) is 

Go-,I(& -L 0,) and Pm _lo( EL + 1) in (21) and positiwz and can be used to compute Pm _ ol_ Since 

(22) respectiveIy to >+eIcI Pol_-oo(EL + 0,) and alI the transition probabihties are at the same 

xy - ict Energy b’ CM1 

IO-00 52s 0_7m(--1) 
425 0558(--i) 
325 0_332--1) 
22s 026(-l) 

10-01 52s 0.164 
425 O-l25 
325 O-864-1) 
73 0_480(--1) 

20 _ 02 525 0300(-u 
425 O_I98<-1) 
32s o_m5(-1) 

ME&l 

Q99o<-3) 
0_191(-3) 
o-133(-4) 

<I(-10) 

O-=%--1) 
O&63(--1) 
o-451<--1) 
0246(-l) 

0239(-3) 

O-437(-4) 
0332(-s) 

o_77q-3) 
O_lSs(-3) 
0_141(-4) 
0_180(-6) 

0_602(-1) 
o_4sq-1) 

03oy--1) 
0_167(-1) 

0200(--t) 
0_91q- 3) 
0270(-3) 

w4 
0_74q-3) 
0_144(-3) 
0_107(-4) 
o-490(-7) 

OAoo(-I) 
0_448(-1) 

==a--1) 
oAs(--lj 

O-=4(--3) 
Orn(-3) 
OBl(-4) 
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kinetic energy. SBI will give seven transitions in an 
unsymmetiic system like Nz f a_ compared to five 
in a symmetric system Some of these transition 
probabilities will be at different total energies. The 
transition probabilities increase sharply with in- 
creasing total energy and over a wide range, the 

l-able 3 

Fig 2. P,,_,,(E) and P,,_,(E) wrsus total enem. E for 
the N= +02 system_ E is III-& in tits of ittie. 

SBI yields -5etter results than both CMI and ME&i 
(see fig_ 2)_ 

The two other systems studied- (Nz f CO/OC) 
have o, = 0.920. As may be expected the resonant 
energy transfer is important- The effect of coIlid- 
ing atom mass is evident in these systems where all 

_-_- - 
Transitionpmtxabilitia Pii_&# ezzihlated for theN2+C0 ~stau-fhe reduced paramuas in tbehamilt0aian~~~=1_1550. 
m-1/Z.u*-os2o.~-0_114~ 

gi--w EaaKy b' am MEM lsaa =' Lsdingd' _C' , 

Ol-oo 52!i o-101 O-435(-2) 0_41y-2) 052s(-2) 0_4l2(-2) 

425 o-7311--1) O-197(-21 o-566(-3) 0_394(-3) 0558(-q 

10-00 525 osmi- Ii o-414(--5) 0_236i-2) o-198<--2) 0.232(-2). .- 
42s O-722(-1) <l(-IO) 0x22(-4) 0.138(-3) O-825(-4) -__- 

10-01 525 0358(--1) o_llqo) osoo(-11 O&57(-1) o-709(-1) _ 
4.25 0_134(-1) 0.851(--1) 0585(-l) O-612(-1) 053q-1) ~. 

20402 52s 0397(-l) ow(--2) 0347(-Z) osz!(--2) 0.292(-Z) 

4 p(-q)'pxlo-' -. m-. 
bj ToraIencrgy mcaavddinunii~oih~~~abovt&pointa~~ .- 

~&qImltalrrsulUarcf~rrf.[13~ 
.~Rcsdrsfromthep-td 
=B ?%za&Ui&rrsullsarc~~[I6~ 



ij 4 ik; Encqy b’ CM1 MEM Exact =’ Scaling d’ SGG =’ 

OI-+OO 525 0594( - 1) oxq - 2) 0.242( - 2) 
415 0_419(--1) 0_143(-2) 057q - 3) 

IO--00 525 0_552(- 1) 05@x-3) o_ss9( - 3) 
425 0_411(--1) 0X0( - 6) o-179(-3) 

10-01 525 0.127 0_668(--1) O-457( - I) 
425 o-933( - 1) 0_4s4(-I) 0331(-l) 

ZO - 02 525 -0 O-72% - 3) 0_11y-1) 

-’ p(q)=px10-4 
-bB 7ixaIszrgy~ in uniis of hw_*,, &ove -p&m cxxrgy. 
cB Exacf qwmcd rault+ arc from rrf_ [131. 
J’ Raulu from the p-t me&d_ 
o SZcm&&ddrrycf-rrL[l6~- 
0 All CM! cquatiops &kc a ~ci%r Kdut 

0_209( - 2) 0239( - 2) 
o-422( - 3) O-571( -3). 
o-703( - 3) O-887( - 3) 
oxiq - 3) 0_179(-33) 
O-471( - I) 0_404(- 1) 
0336(-l) 0.303( - I) 
o-943( - 3) 0_945( - 3) 

the energy transfer modes in the NL t CC system 
are iess efficient than in the Pi2 + CO system The 
01 - 00 process is slightly favored over 1G - OO_ 
The yes coefficient is ustullly neggtive and there- 
fore Pet _-oo and P,,, _ m are computed via eqs. 
(21) and (22)_ The results of computations on these 
two systems are given in tables 3 and 4. respec- 
tively_ 

4, Discussion 

In this paper we have implemented an inversion 
procedure which utilizes both classical and quantal 
seaiing theories so as to ob:ain transition probabil- 
ities from ckskal moments_ _;uI these methods are 
valid at every impact pammet= thus a ful! three- 
dimensional inversion scheme is identical in prin- 
ciple to the one-dimensional example treated here_ 
in common with other metha the presen: scal- 
ing-based inversion relies on the ciassical-qttan- 
tum equahty of moments [lo]_ In addition, we 
further require that the collision system is such 
that application of the ECS theory 1121 wvouId be 
feasible 

In most collision systems the lower-order mo- 
menu. eg ET. I&. and ET’. are usually more 
accurate than hi&r-orderones An inversion pro- 
cedure based Sorely on these should yield better 
results than methods which invoke higher-order 

moments as well. While the SBI uses this fact to its 
advantage. we fmd that the inaceuraey in a given 
moment is not uniformly distributed over the scal- 
ing coefficients The 10 and 01 coefficients are 
usually more accurate than the others. Thus, for 
e_xample. the SBI P’._Oz is approximately half of 
its exact vaIue. while PtO_O, is almost exactly the 
correct quantal result_ Within the SBI, note that 
any inaccuracy in moments is transmitted linearly. 
as both the CST and ECS are linear theories_ Thus 
the percent error in the moments is reflected di- 
rectly as a similar error in transition probabilities. 

The SBI can be easily used in getting a proper 
qualitative picture [15], since this merely calls for 
comparing coefficients in order to e!icit trends and 
propensities_ As a quanrifatiue tool, thou& the 
use of SBI does require some judgement and as 
such is difficult to automate_ It might be men- 
tioned that all these moment ax&y&s techniques 
call for some subjective appraisak - whicIi mo- 
ments to use in eq_ (13) in the MJZM. or which set 
of equations to choose from [e-g-, eqs. (12b), (12~)) 
for the CML 

There are di&rences among the three methods_ 
Tbe SBI is a fully dynamIcal theory and incorpo- 
rates only fe&res of the dynamics in the inver- 
sion, as does the CMI_ The MEM only provides a 
least biased estimate of transition probabilities 
consistent with the dynamical &put_ This may not 
always be consistent with the full dynamics as can 



be seen in all the .four systems studied here_ Fur- 
ther, the SBI gives information at.a fured kinetic 
energy, whiIe the other- methods yield information 
at fixed total energy. mu 

There is one feature %*&in the present- SBI 
which tends toe restrict its fuI/ utility. For 
anharmonic systems.~ the quantal ECS formulae 
[12] andogous to eq. (10) are not particularly 
simple, and since energies are not always linear in 
quantum number. the stepwise anaIysis of scaling 
coefficients cannot proceed with the same ease as 
in the present case. There are two possibIe means 
of overcoming this drawback: one might *use ap- 
proximate semiclassical scaling formulae [l?] to 
simplify the expressions, or, alternatively. assume 
a functional dependence of the transition probabil- 
ities on the kinetic energy. 

In the present applications, we see that the SBI 
- although slightly more difficult to apply - is 
uniformly more accurate than the CM1 and MEM, 
and quite often, somewhat surprisingly, of simiiar 
or better accuracy. than the semiclassical forced- 
oscillator Approach of Skodje et al. [16]. The four 
systems studied here are very different in their 
characteristics and represent a sufficiently wide 
range of generic behaviours. (The case of o, near 
zero has not been studied; such systems are close 
to the atom-diatom co&ion limit where the SBI 
method should work with similar ease.) 

In addition to its providing of a viable means of 
obtaining transition probabilities, two facets of the 
cIassicaI scaling theory deserve mention. One of 
these, the role of the CST in compacting large 
amounts of trajectory information and in reducing 
the number of required computations, has been 
extensively documented [11,15,18]. Further. recall 
that the angular variables also obey the scahng law 
[ll]. Although such scaling has not been used in 
the present work, this aspect can be used fruitfully 

in -the clasS;cal S-matrix: [4]- caIculations. In r .~. 
multi&mensionaI systems, this feature is IikeIy to .-~ 
be of considerable utility. :- : : _. 
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