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An inversion procedure to obtain quantal transition probablhues from the analysis of clas:al moments has bun apphed w0

<k, Homi Bhabha Road, Bornba_y 400005 India R T e

various model diatom-diatom collision systems. 11us inversion relies on the use of 2 s&hng theory to analyse classical
moments and the subsequent use of a quanlal scaling theory in interpretation of the classical scaling coefficients.- We obtain
transition probabilitics that arc in good agrecment with exact quantum studies, and also comparc favonbly wnh other momcnt
inversion schemes that have been described earlier in the literature.

1. Introduction

A problem of continuing interest is the de-

termination of quantum information, e.g. state-to--
state transition probabilities, from a classical treat--
ment of molecular collision processes. Various.

methods [1-8] have been suggested for-this pur-

pose in the past few years. These methods can be -
distinguished as those that directly obtain transi- .

tion probabilities such as the quasiclassical histo-
eram [1], continuous quantization |2}, semiclassical
wave packet [3] or classical S-matrix {4] methods,
and those that attempt to invert [5-9] averaged
classical information, such as moments, and are
thus indirect. The rationale behind the latter meth-
ods [5-9] is that often classical mechanics is likely

to be more accurate (when compared with correct *_ :

quantal results) for phase-averaged quantities [10].

In this paper we study the problem of collin-
early colliding diatomic molecules. Our intention
is to obtain transition probabilities for the prin-
cipal inelastic processes by. implementing the (lndl—

rect) classical methods of moment inversion using

energy transfer and cross correlation moments. .

There are essentially threc methods [5-9] that -
_exploit  the claSsiwl—éqmtum equality of -mo-
ments. If all moments are known exactly, their -
inversion to obtam u'ansmon probabxhues is
umque. However the number of accurate cIassnm.l'
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" moments is usually far smaller than the number of =

significant transitions, which makes the problem
underdetermined. Extra constramts can be incor-- v
porated [5] in-the form of an entropy maximiza-

tion - principle. ’I'hxs was first 1mplemented by.
Truhlar and co-workers [5] in the study of a collin- . -

ear He—H, collision, wherein V-T energy transfer

" ‘'moments were used. ‘Coltrin and- Marcus [6] intro- -

duced a cross-correlation moment analysxs classi- -
cal moments from low initial states were dlrectly s
expressed in terms of transmon probabllmes and =~
the inversion was effected by solving sets of linear - :

equations. A third method, suggested earlier by us -
[9]. proceeds along entirely’ different lines: ‘We first
employ a classxcal scaling theory (CST) T11] o

express the variation of the moments with the = t
_initial states of the molecule. This results in-a S

polynomial expression in the initial quantum num-

" bers (or actions) of . the problem. The -
" classical-quantum equivalence of moments is in- "
~ voked, and the scaling coefficients are expressed in
. terms of transition probabilities. This is made pos-
“sible by the vse of a quamal scaling theory [12], -
“viz. - the energy—corrected sudden (ECS) theory.
" Under suitable approxxmauont a vxable mversxon

procedure r&sults. =T
* This paper is divided in four pans The model o

and relevant details of the classical and quantum1 an
7's<zlm theones ‘are d&scnbed in sect.on - The
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) methodology of the present smhnO-based mver- B [12] e.xxst) are pr&sented in secuon 3. For conveni-

“sion and the applications of all three inversion. ence, we have : restricted . the apphcatmns ‘to
methods to various diatom-diatom collision sys- harmonic systems. A discussion and summary fol-
tems {for which benchmarit- quantal caiculations Iows in section 4.

2. Theory

2_I. Model and scaling

The collinear system of t~0 diatomic molecules (AR + CD) studied here has been described earlier [14].
The classical hamiltonian is given in reduced units by (in usual notation)

H=a’P?/2m+pi/2+ V(@) +p3/2 + Va(w.q:) +exp] — R + a(aq; + Ba2)]- 1)

All energies are measured ia units fiw,p: w.p is the frequency of AB and o, is the ratio wcp/wap- The

classical energy transfer anc cross-correlation moments are defined as

ET'(m, nz. Ex)=(1/4=2) [ [*a0, a0, [(Ef + E) = (£, + E.)]. @

My, (m, ny. Ex)= (1/4"2)1‘;2:_[)2:‘181 de. [(Elr_ E«:)k(Ezt_ 'En:)’]’ (3)

where Ef, Ef are the final and E,. E,, are the initial energies of AB and CD, n,, n, are the initial
internal states and 8,, &, are the initial internal phase variables respectively; the initial relative kinetic
energy is denoted E .

For a collision system with two vibraticnal modes, the vanation of the classical. energy transfer moment
with initial internal states is given by a polvnomial function [15]

ET’(n,, n,. Ex)= X Y;m(Ex)"{"?- (9

J.rz

It can be shown that the scaling form for A,, is similar,

: Mu("x- ny, Ex)= Y §(Ex)nins. V ' (5)
j.m .

Quantum mechanically the two moments ET and M,, are given by

) open states ’
Erl(nl’ n;, EK) = Z Pn‘ny—-nln~.(EK)Enin" ) (6)
n3. 43>=0.D
open states ) ’
Mkl(nl’ n,, EK) = Z Pn,r»—-n.n;(EK)ljn’::lv - (7) .
m. 23=9.0
where
1 RN
Ere = [(Eni— o) +{Es— . Ukt =|(Eq E..— E.,) l-
P, ._ :n(Ey) is the transition probability for the process myn> — nin'z at kmeuc energy Ey.
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- Im thc pmt smdy only I.-‘.'I'l and M" momems have been used and ‘we, mtnct the dlscussxon _16

harmonic oscillators. For convenience we drop the superscripts-in ETl and the coe.fﬁcrent 71-- ;md 8“
g Def’mngA,—n1 Ry’ A-,—nz nz,eq.(6)mnberewnttenas T ,_fz = i T

Er(nl? "27 EK)- Z A nuh—*n.i»nl n-.(EK)+ z A“’rA" n‘n»—on,.nvi-.i»(EK) - }
By=—my dx=—nmy T e s T
+ 2 Z (Al+er2) n,ns—bnl-l»A, n,+As(EK) o : . )
4,=-n,42=—n,’ : o S,
where conmbuuons from V—T p.owsses (the first two terms) and V—V or V—V LT prooess&s (tlnrd term) :
can be- xdenufied. For 1dent1cal molecules (o, =1) the resonant energy transfer (A1 = —A;) is extremely -

efficient but its contribution to ET is zero. Thus the analysis of ET moments is not hkely to yleld much -
pertinent information and we need to consider the cross-correlation moment My, S '

My (n,, nzv Ex)

z Z A A’ ney -+ A, n-+_\~(‘EK)+ Z Z A A n,n-—on‘—A‘ n,—A,('EK)

Jx"‘ 3,=1 4,=14,=1
- Z Z AIA nyry —~ Sy np—As (EK)— Z z A A n,n,—-n.—d, n~.+.j’(EK)]-‘ 7‘, (9) L
A;=1A,=1 a,=1 A»—l )

The last two terms of eq. (9) are a measure of V-V processes. At the same time it is clear that the
cross-correlation moments do not account for V--T transfer. Thus both the ET and M, are essennal for'
computing complete state-to-state information. : : R

2.2. Scaling-based inversion (SBI ')

The scaling-based inversion (SBI) implements the ECS theory [12] in reducuv7 the number of dxfferent»
transition probabﬂm&c 1n egs. (8) and (9):

Pn,n~.—~n,—.\,-n~—-d (EK) II','-"I_A'I ‘In; a2 J‘l IA"!-"‘*;'?:::‘E" PAA:#&(EK)’ V . (10) i
Py~ myrayome-a (B ) = [ L5 I Ig3nts [z 22 [ Pos e ao(E). ) an,

where the I are geometric factors and A account for adiabaticity corrections. For the case of harmonic
oscillators {12}, »

2 +m
II’:q—m.nl =(nmm) and lA:::jl.Jl:.iJj'-l =1

After expanding the binomial coefficients, on combining egs. (10) and (11) wnh eq. (8) we get
ET(n,, n, Ex)=13 ylm(EK)n,n-, .

Fom
Sxmxlarly eq. ) reduwc to
Mn("b n», Ex) 2 ,m(Ek)"mh

Cdem ~

» - . RO - -
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so that within the framework of the ECS theory, the quantal scaling form for the moments is identical to
the CST. The y and 8 coefsicients can thus be expressed in terms of the principal transition probabilities,
as given in table 1. Within the ECS approximation, the transition probabilities for other processes can be
generated from the principil ones, F;; —~00 and 0 — 0j- through egs. (10) and (11).

2 3. Otker inversion method>

For completeness we review here the essential features of the other inversion methods [5-8]. The
cross-correlation moment ir:version (CMI) procedure [6] takes advantage of eq. (7) and inverts the moments
M, from a given state m,n, to yield the transition probabilities from this state. For example, if more than
two quantum changes are insignificant from initial state n, = 1, 7. =0 at a given Kinetic energy Ey. then

Pio oo Ex) = (Mz— Myp) /2. (12a)
P Ex) = — (M2 + 20, My, ) /o] : (12b)
P;o—-m(fx) = (20, M, + M) /e (12¢)
Pio . 20( Ex ) = (Mg + Myg) /2. : (12d)

There are some difficultics in using the CMI method. Firstly, classical mechanics is less accurate for lower
initial states but in order to determine Py _.;; one has to use M;(1, 0). Secondly. for higher initial states.
the number of significant transitions is large and it is essential to use the higher-order cross-correlation
moments: these are cons:iderably less accurate than the low-order ones. Thirdly. for any transition
probability, P, .. . ..,.. a aumber of equations can be written (e.g.. egs. (12b) and (12c) for Pyg_.g)- In
some cases {8] these equaszions give absurd (negative) resulis and can be rejected immediately. A major
problem is encountered when the remaining equations give differing and/ or conflicting resulls- It is then
not obvious which equaticn should be preferred.

The other well-known inversion. the maximization of entropy method (MEM) [5]. invokes additional
constraints. Within this technique. the inaccurate higher-order moments are unnecessary in effecting the
inversion. Successful applications of this method to atom-diatom systems [5.10] have used only the first
two moments of energy transfer. Note that the resonant contribution to the ET can be very small (zero for
«, = 1) and therefore it is necessary to use cross-correlation moments. We have tried various combinations

Table 1
The classical scaling coefficients ¥ and 8 in terms of the state-to-state transition probabilities. All the quantities are at the same
kinetic energy, Ey

Yoo = Poo—10+ W Poy ot ¥ 2Po0 o ¥2e, Py _ ¥ --- ()
o= Foo 10— Pro oo ¥ Pro_oc—(1- &) Pioon ¥ (1=, ) P n ¥ ... (i1)
Yor = < Poo—or — @ Por oo F & Pz oo F (1 — ) Poy 10 ¥ --- (iii)
Y=~ FPx (10, /)Py cr— (1~ )Py _n ¥+ - Gv)
Yor =~ Por oo~ (@ —1/2)Fr 10+ (1— )P0z .20 F .- )
0=~ P 1t Pro0x—2Pg_ 1 #2Pp_ 2+ ...) ().
Sm=w (- Powt Po-n— 27w —10F2P .p+...) - (+ii)
Sp=c,(—Po_o— ?-P:o—uz+---) _ : (vit)

Sz = (—Fox 10— 2Pp .3+ .-.) : (ix)




: R Bhargm R Ramm-uwm / Scaluxg thearv for tla.cszcal morments in dmwm cﬁawm .sjmems 4'

of cross—correlauon and ‘energ °y transfer moments and- found that the most. reasonable &snmates of

transition probabilities are provided by ET ET‘ and M“ as threc constramts in maxumzmg the emropy,

S. This leads to the oondmon

dS=0=—k Z (1“ P,,‘,, +“+”E~ ~~+CE'7"*

where P_._. represents P, . _, and &, b,
7 ayns nyrs— nins

3. Application and results

Vibrational relaxation in collinear molecular
collisions. is of three types, viz. V=T, V-V, and
V-V,T energy transfer. In most systems energy
transfer is quite inefficient; the dominant processes

involve exchanges of a few quanta of energy at

most. Of importance among these are one-quan-
tum de-excitations in a single oscillator, and reso-
nant or near-resonant- energy transfers. In the
present study we have neglected some multiple
quantum exchanges; the errors inherent in the use
of classical mechanics are often larger than the
magnitudes of transition probabilities for such
processes.

The four systems studied here are N, -+ N,.
N, + CO, N, +OC, N, + O,. An advantage in
studying these particular model systems is that

accurate quantum scattering calculations have been -

performed earlier [13]. These have served as
benchmarks for other (semiclassical forced-oscilla-
tor) approximation methods as well [16]. In the
present systems, the lower classical moments are in
good agreement [14] with the quantal ones and the
exact state-to-state transition probabilities follow
the ECS scaling law reasonably well — both these
being implicit prerequisites for the SBI. Note that
the four systems differ considerably in «, which
ranges from 1 for N, + N> to 0.67 for N, + O,,
and thus represent a sufficiently wide range of

model diatom-diatom systems.. When o, is close -

to 1 the resonant processes jj—>ix1, j+1 are
highly .favored, whereas 'ont-quamum' de-excita-.
tion in the CD molecule is the major process for o,
much different from 1.~

The first step in the determination of the state-
to-state transition probabilities through the SBI is
the computation of scaling coefficients. This is

£ and d are the Lagrange,miﬂtiplicrs 51

+du,.ii.,)d winir o ,??(“1;3)*._2

achxeved via the prescnphon gwen in" ref. [13]

classical moments for various initial states are

calcuiated by the standard procedure [1} and are
used as inputs to generate the scaling coefficients
{9,15]. We restrict oursel\.es to a maximum of 25 -

initial states for purposes of expsdiency. The lower -

coefficients which ' pertain to the low-quantum .
transitions are then reasonably well converged. In
all four systems it is found that v,9/v39- 810/%20 >
10> and v20/¥30. 820/830 > 107 Since v,q. 8,0 1€D-
resent the magnitude of n0 — On’ processes 1t is’
reasonable to assume that all the transitions in- -
volving more than two-quantum changes in any of -
the molecules are negligible [15]. However, the

problem is still underdetermined as the number of . ,'

allowed . transitions is greater than the nuniber of -

available coefficients. An analysis of the sign and

magnitude of various coefficients is necessary. in

order to decide how best to implement the inver-.

sion procedure. Such analysis, in all four cases, led -
to consideration cnly of processes (except resonant

ones) involving less than two-quantum changes in

any one of the molecules. For example, ' m the

N, + N, system at Eg =2.25,

Yoo = —0264(—7) = — Pag 0o — 0.5 Py _. 1. (14)
8sp=—0742(—3)= —Pay_g1 —2 Pag.0o- - (15)

- Since 85y > 5o and all transition probability terms

have the same sign, it is evident that Pag_.g> >

P .00 OF Py "o, We now have a set of equations

which can be inverted to give the transition prob-
abilities at a given kinetic energy Ey:

820 = —2&,1’20_.039 ' (16) ':'
802 =" -2, Por .20, B O
Bio=—0Promor 20 Poczs - (18) "
8oy = —,Poy—10—2&Poz 205 - - - ;""‘7(19) -
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Yoo = @ Fog g1 + Foo—10- - (209)
Yor =@ Poo o1 — @ Por~0s (1 — @) Poy 10

+(1 - ) Pp > (21)
Yio=FPoo—-01— Prio—~oo— (L — ) Pro_on

+(1 — ;) Py o gz- (22)

All the resonant transition probabilities of interest
can be ccmputed from & coefficients [egs.
(17)—(21)}]. and one-quantum V-T transition prob-
abilities from the y coefficients. At low energies
and when «,. =1, yy,(the ET from n,. n5=0) is
usually negative. In such <ases eq. (20) cannot be
used. We therefore determined Fy, . o5 2nd Py (o
via egs. (21) and (22). Mote that there are two
equations and four unknowns (Fy .o P9 —o0-
Poo 01> Pos—~10)- But  Pye_.o:(Ex) and
Poo 10{ Ex) are also Py _.eo(Ex — «;) and
Pyg_.ow(Ex —1) respectively. The one-quantum
transition probabilities rnay be determined by
stepwise computations via eqs. (21) and (22); pro-
ceeding higher in initial kinetic energy by steps of
w, and 1 respectively fro:n some sufficiently low
energy, say E;, at which Py __g; and Fpy ;0 can
be ignored in comparison with Py, _ o9 and Pig _ oo-
The Py .go{Ey) and Py, oo( EL) computed via
eqs. (21I) and (22) will now serve as inputs
Poo ~or(Ep + ) and Poy 1o EL +1) in (21) and
(22) respectively to yield P, _ o o(E, + @,) and

Pig . 0o(EL + 1). Similarly these can be used to
give Po, . oo( Ep +2w,) and Pyg_oo(Ey +2), and
SO on. S B, -

In the symmetric N, + N, system the magni-
tude of all other transitions is much lower than
10 — 00, 10 — 01 and 20 — 02. The 10 — 01 pro-
cess is = 100 times more efficient than the one-
quantum de-excitation. In fact the resonant
processes dominate to an extent such that even the
magnitude of 20 — 02 transitions is 2.5 times larger
than that for 10 — 00. Computations from various
methods on this system (results are presented in
table 2) show that the SBI is able to account
properly for this propensity somewhat more accu-
rately than the CMI and MEM methods. Unlike
the CMI and MEM the SBI does not require the
higher M,, The scaling [11}] works efficiently at
higher energies and so does the SBI. The agree-
ment with quantal results is progressively better as
the total energy of the system increases, as can be
seen in fig. 1.

These propensities are largely reversed in the
N, + O; system (w, = 0.67) where 01 — 00 is more
efficient than near-resonant processes. However,
the 10 — 00 process is much less efficient than
01 — 00 since it involves a larger energy transfer.
The ET moment from state n, =0, 7, =0 (7)) is
positive and can be used to compute Py, _, q;- Since
all the transition probabilities are at the same

Table 2 .

Transition probabilities F,; ., calculated for the N, +N; system. The reduced par s in the hamiltonian are: 8£=100.

w, =100, m=1/2, c=0.114%

iF— kI Energy > CMI MEM Exact © Scaling ®

10 — 0O 525 0.750(— 1) 0.990( — 3) 0.778(—3) 0.746(—3)
425 0558(—1) 0.191(—3) 0.158(—3) 0.144(—3)
325 0372(—1) 0.133(—4) 0.141¢(—4) 0.107(—4)
235 0205(—1) <¥—10) 0.180(—6) 0.490(—7)

10— 01 525 0.164 0.883(—1) 0.602(—1) 0.600(—1) .

i 425 0.125 0.663(—1) 0450(—1) 0.448(—1)

325 0.868(—1) 0451(—1) 0305(—1) 0302(—-1)
225 0.430(—1) 0246(—1) 0.167(—1) 0165(—13

20—-02 525 . 0300(—1) 0.239(—3) 02200( —2) 0.854(—3)
425 0.193(—1) 0437(—4) 0.914(—3) 0371(-3)
325 0.105(—1) 0332¢(—5) 0270(—3) 0.851(—4)

» p(—-@)=px10-9

bl Total cncrgy measured in units of fw,p above zero-point energy.

<! Exact quantal results are from ref. [13L
9 Results from the present methbod.
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Fig 1. Pyo_m{E) and Pm__m(E) versus total energy E for
the Ny + N, sy ed in units of Aw,p- In the
Tower part CMI rsult.s are off scale.

kinetic energy, SBI will give seven transitions in an
unsymmetric system like N, + O, compared to five
in a symmetric system. Some of these transition
probabilities will be at different total energies. The
transition probabilities increase sharply with in-
creasing total energy and over a wide range, the
Table 3

Transition probabilities F,;_.,,
m=1/2, o,=0920, a=0114%

. No+05

“osBI
o x EXACT » : - ) e
.?'“‘AMEM - LT
o-30-- o CMI = ’ ’
Q- S
x .20+ ©
o s o,
-0k = *
O+
1 ] : ] 2 | 2
1-OF—
a
©-801 .
T
==
> 40
o
20}
or _
k] 1 13 1] *

325 3-75425475 525
E

Fig. 2. Pio_.oi{ E) and Py; . oo E) versus total energy E for
the N. + O, em E ist ed In vnits of Awag-

SBI yields petter results than both CMI and MEM
(see fig 2).

The two other sysiems studied (N, + CO/0C)
have «, = 0.920. As may be expected the resonant
energy transfer is important. The effect of collid-
ing atom mass is evident in these systems where all

calculated for the N, +CO system. The reduced parameters in the hamiltonian are: .8 =1.1550,

F—e kI Energy ® CcMI MEM Exact © Scaling ¥ SGG ©
01— 00 525 © 0101 0.435(—2) 0.412(—2) 0.528(—2) 0.412(—2)
425 0.731(—1) 0.197(—2) 0.566(—3) 0.354(—3) 0.558(—3) :
10 —-00 . 525 0.987(—1) 0.414(—5) 0236(—2) 0.198(—2) 0232(—2).. - -
425 0.722(—1) <1(—10) 0.822(—4) 0.138(—3) 0.825(—4) .. . -
10—-01 52s 0.358(—1) 0.116(0) 0.800(—1) 0.857(—1) 0.709%(—1)
. 425 » 0.134(—1) 0.851(—1) 0.585(—1) 0.612(—1) 0.533(—1)
2002 525 : 0397(-1) 0254(—-2) 0.347(—2) 0.322(—2) 0292(—2)

= p(—q)=px10=%

bed Tomlenu'gymcasuredmunnsof Iu.:,m abovez:'o-pomtmetgy

<) Exact quantal results arc from ref. [13].
-9 Results from the present method. - -
b Samdamc:lmﬂtsmfromraf.[lﬂ.
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Table 4

g o
B )

Transition probabilities F,;__,, -2lculated for thc N. +OC system. The reduced parameters in the hamnltoman are: B 0.8660,

m=1/2, ;=0920. a= o114

i~k Energy ™ CcMI MEM Exact ¢ Scaling ¢ SGG <
01 - 00 525 0.594(—1) 0.386(~2) 0242(-2) 0209%(-2) 0.23%(—2)
435 041%—1) 0.143(—2) 0.576( — 3) 0.422(—3) 0.571(—3)
10— 00 5235 0.552(—1) 0.509( - 3) 0.889( —3) 0.703(—3) 0.887(— 3)
425 0411(—1) 0.350(—6) 017 — 0.130(—3) 0.179(—3)
10—01 525 G.127 0.668(—1) 0.457(—1) 0471(—1) 0.404( — 1)
125 0.933(—-1) 0.4384(—1) © 033K(—1) 0336¢(—1) 0.303(—1)
20 - 02 525 - D 0.729(—3) 0.112(—2) 0.943(—3) 0.945(—3)
* p(g)=px10"7%

- B Toral enzrgy measured in vaits of Aaw,p above zero-point energy:

<} Exact quantal results are from ref. [15]
* Results from the present method.

©* Semiclassical results are from wef. [16]
D All CMI equations give a negztive value.

the energy transfer modes in the N, + OC system
are iess efficient than in tke N, + CO system. The
01 — 00 process is slightly favored over 106 — 00.
The vy coefficient is usunlly negative and there-
fore Fg; .0 and Py _.go are computed via egs.
(21) and (22). The results of computations on these
two systems are given in tabl&s 3 and 4. respec-
tively.

4. Discussion

In this paper we have implemented an inversion
procedure which utilizes both classical and quantal
scaling theories so as to oblain transition probabil-
ities from classical momen:s. All these methods are
valid at every impact parameter; thus a full three-
dimensional inversion scheme is identical in prin-
ciple to the one-dimensional example treated here.
In common with other methods, the preseni scal-
ing-based. inversion relies on the classical-quan-
tum equality of moments [10]. In addition, we
further require that the collision system is such
that application of the ECS theory [12] would be
feasible.

In most collision systens the lower-order mo-
ments, eg. ET, M,,, and ET>, are usually more
accurate than higher-order ones. An inversion pro-
cedure based solely on these should yield better
results than methods which involve higher-order

moments as well. While the SBI uses this fact to 1ts
advantage. we find that the inaccuracy in a given
morment is not uniformly distributed over the scal-
ing coefficients. The 10 and 01 coefficients are
usually more accurate than the others. Thus, for
example, the SBI P,,__,4, is approximately half of
its exact value, while P,5__,, is almost exactly the
correct quantal result. Within the SBI, note that
any inaccuracy in moments is transmitted linearly,
as both the CST and ECS are linear theories: Thus
the percent error in the moments is reflected di-
rectly as a similar error in transition probabilities.

The SBI can be easily used in getting a proper
qualitative picture [15], since this merely calls:for
comparing coefficients in order te elicit trends and
propensities. As a guantitative tool, though; the
use of SBI does require some judgement and as
such is difficult to automate. It might be men-
tioned that all thése moment analysis techniques
call for some subjective appraisals — which mo-
ments to use in eq. (13) in the MEM. or which set
of equations to choose from [e.g. egs. (12b), (12¢)]
for the CML

There are diiferences among the three methods.
The SBI is a fully dynamical theory and incorpo-

- rates only features of the dynamics in the inver-

sion. as does the CMI. The MEM only provides a
least biased estimate of | transition  probabilities
consistent with the dynamical input. This may not
always be consistent with the full dynamics as can
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at fixed total energy.

There is one feature thhm the presem SBI
which tends 1o -restrict ‘its. full utility. For
anharmonic systems,- the quantal ECS formulae
{12] analogous to eq. (10) are not particularly
simple, and since energies are not always linear in

quantum number, the stepwise analysis of scaling

coefficients cannot proceed with the same ease as
in the present case. There are two possible means
of overcoming this drawback: one might use ap-
proximate semiclassical scaling formulae [17] to
simplify the expressions, or, alternatively, assume
a functional dependence of the transition probabil-
ities on the kinetic energy.

In the present applications, we see that the SBI
— although slightly more difficult to apply - is
uniformly more accurate than the CMI and MEM,
and quite often, somewhat surprisingly, of similar
or better accuracy. than the semiclassical forced-
oscillator approach of Skodje et al. [16]. The four
systems studied here are very different in their
characteristics and represent a sufficiently wide
range of generic behaviours. (The case of w, near
zero has not been studied; such systems are close
to the atom-diatom collision limit where the SBI
method should work with similar ease.)

In addition to its providing of a viable means of
~ obtaining transition probabilities, two facets of the
classical scaling theory deserve mention. One of
these, the role of the CST in compacting large
amounts of trajectory information and in reducing
the number of required computations, has been
extensively documented [11,15.18]. Further, recall
that the angular variables also obey the scaling law
'[11). Although such scaling has not been used in
the present work, this aspect can be used fruitfully

be seen in all the four systems studxed here- Fur- vm locatmg classxcal tra_lectones wnh the" proper,
 ther, the SBI gives information at a fixed kinetic -

energy, while the other methods yleld mformauon LR

-~ boundary conditions - which could then be’ used
“in  the classical: S—matnx [4]- calculatmns- “In.. -

multi-dimensional systems, thxs feature i is h.(ely to
be of consuierable uuhty. -
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