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The classical collision dynamics of  a model a tom-molecule  non-integrable collision system is studied, and the energy 
transfer (ET) moment is examined as a function of  the initial semielassical level of  the molecule. A recently derived classical 
scaling theory is shown to be valid in the case when the molecular motion remains regular throughout the collision, and the ET 
variation is then characterized by a polynomial dependence on the initial (semielassical) quantum numbers. When chaotic 
motions participate, the ET no longer follows the scaling law. The utility of  the scaling theory in providing the proper 
interpolation form for extending classical trajectory data in non-integrable collision systems is discussed. 

1. Introduction 

Non-integrable hamiltonian dynamical  systems 
have been studied in a variety of  applications to 
chemical problems [1,2]. One area of  interest is in 
modeling (externally perturbed) evolving systems 
- as in bimolecular collision [3-7] or  mult iphoton 
absorpt ion [8] phenomena.  A general conclusion 
that has emerged from some recent studies is that 
classically there are two different dynamical  be- 
haviours, which can be considered the reflection of  
quasiperiodic (toroidal) and aperiodic (chaotic) 
motions in conservative non-integrable hamilto- 
nian systems [1,2,9,10]. 

An example is afforded by an a tom-molecu le  
collision system, for which the overall classical 
hamiltonian is 

H =  r +  V(R, q) + q). (1) 

Here  R is the collision coordinate,  T=p~/2p the 
re la t ivekinet ic  energy, PR the relative momentum 
and # is the reduced mass. The molecular  hamilto- 
nian H 0 is chosen t o  be non-integrable in N de- 
grees of  freedom; in usua lno ta t ion ,  the momenta  
and coordinates are denoted p and q. At  t = t o and 
t --, 00, i.e. a t  the be#nrdng  and end of  the colli- 
sion, R - * o 0 : a n d  V--~O. Then T and H 0 are 
conserved quantities although during the collision 

these change. (For  purposes of  clarity, "orb i t "  will 
denote  the internal motion of  H0 viewed sep- 
arately, and " t ra jec tory"  wiU refer to the overall 
mot ion of  hamiltonian (1).) 

For  problems such as above, s c a l i n g  laws [11,12] 
have been derived in recent work. This classical 
scaling theory (CST) relates the variation of  arbi- 
trary dynamical  quantities with certain initial con- 
dit ions through simple polynomial  expressions. 
Earlier applications [11,13-15] of  the CST have 
been to asymptotically integrable collision sys- 
tems. The expressions used there related the varia- 
tion of  vibrational.phase-averaged energy tranafer 
(ET) with the initial action variable (for molecular  
situations it is customary to work in ac t ion-angle  
coordinates since actions can be  identified with 
quan tum numbers) .  There are two principal ad- 
vantages in using the CST. Firstly, the use of  a 
scaling f o r m ~ a  greatly reduces computat ional  ef- 
fort, since it offers a means of  accurate prediction 
b y  providing the correct interpolation and extrapo- 
lation form. Further,  analysis of  the scaling coeffi- 
cients in terms of  quan tum transition probabili t ies 
is possible in some cases, a n d  thi~ affords an (at 
least qualitative) understanding o f  quan tum effects 
f rom a small number  of  classical trajectories.  Both 
facets o f  the CST have been  exploited in previous 
work  [14,15]. 
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T h e  realistic mode l ing  o f  chemica l  s i tua t ions  
involves non- in teg rab le  systems,  and  it wou ld  be  
advan tageous  to es tabl ish  the regime o f  appl icabi l -  
i ty of  the C S T  in such cases as well. T h e  d y n a m i -  
cal var iables  s tudied  here  are  average  energy  trans-  
fer  momen t s ,  [ H o ( t  = oo) - Ho(t  = to)] ~. k = 1, 
2 . . . .  as a func t ion  o f  the initial semiclassical  s ta te  
in the col l is ion dynamics  o f  a col l inear  a t o m - t r i -  
a t o m  system. T h u s  H 0 is non- in tegrab le  in N = 2 
degrees  o f  f reedom.  The  semiclassical quan t i za t ion  
[2,16] is e f fec ted  by  the usual  E B K M  rules, by  
loca t ing  par t i cu la r  tori  Y'.,,,,. for  which the ac t ion  
integral  

to  I I 
t l  INTERACTION REGIONt2 tlme 

Fig. 1. Schematics of  the possible internal  mot ion dur ing the 
collision. The  interact ion region is the  t ime interval dur ing 
which BHo/~t is sufficiently different f rom zero. 

L=~p.dq. i = 1 . 2  (2) 
C, 

equals  (n, + a , / 4 )h  where  n, are  integers and  a, 
the  Maslov  indices a long the i ndependen t  pa ths  C, 
o n  the torus.  By the  co r r e spondence  pr inc ip le  [16]. 
the invar iant  torus  ~,,w-, is the semiclassical ana-  
logue of  the q u a n t u m  eigensta te  n tn2. 

In  geometr ic  terms,  for  an integrable,  one-de-  
g ree -o f - f r eedom system, the initial s ta te  is classi- 
cal ly represented  as an  invar iant  circle in the phase  
plane.  T h e  final s ta te  is also a circle, bu t  is usual ly  
not invar ian t  ( and  co r responds  to a q u a n t u m  non-  
s t a t ionary  state).  F o r  two degrees  o f  f reedom,  the 
initial  s ta te  is the invar iant  t oms .  ~ , , ,_ .  In con t ras t  
to the previous  s i tuat ion,  there  are  three  possible 
ou t comes  o f  the evolu t ion  o f  this torus  when  the 
sys tem is non- in tegrable .  T h e  final s ta te  can  be  a 
(non-s ta t ionary)  (i) quas iper iodic  state,  (ii) chaot ic  
s ta te  or  (iii) a mix tu re  o f  these. F o r  all initial 
cond i t ions  on  ~2, in case (i) or  (ii), all final condi -  
t ions lead to e i ther  quas iper iodic  or  chaot ic  orb i t s  
o f  H o respectively;  in case (iii), the  f inal  cond i t ions  
fo r  some trajectories  co r r e spond  to quas iper iod ic  
orbi ts  of  H0, and  o thers  to chaot ic  orbits .  

A pictor ia l  r epresen ta t ion  o f  the possible  inter-  
nal  beha~4our a long a t ra jec tory  is shown in fig. 1. 
W e  focus on  the molecu la r  hami l ton ian ,  and  con-  
s ider  the mo t ion  o f  the  orb i t  t h rough  the phase  
space  of  H o. T h e  initial orb i t  is quas iper iodic .  U p  
to the  in te rac t ion  region t~ < t < t 2, there  is l i t t le 
change  in the in ternal  mot ion ,  which  con t inues  to  
be  on  a toms .  In  pass ing th rough  the in te rac t ion  
region,  the t ra jec tory  can  force the orb i t  to  (A) 

pass  th rough  o n ly  regular  regions such that  the 
f inal  o rb i t  is regular ,  o r  pass f rom the regular  to 
the chaot ic  par t  o f  the in ternal  phase  space.  T h e r e  
are  two fu r the r  possibil i t ies here,  (B) the orb i t  can  
then  re tu rn  to the regular  region so that  the final 
m o t i o n  is regular,  or  (C) it can  con t inue  in the 
chaot ic  region,  so that  one  has  a final chao t i c  
orbi t .  Thus  all t ra jector ies  be ing  o f  type  (A) o r  (B) 
lead to a final quas iper iod ic  s ta te  and  all o f  type  
(C) to a final chao t i c  state.  

T h e  interest  in some earl ier  coll is ion s tudies  
[3,4,7] has  been  in con t ras t ing  the  d y n am ics  der iv-  
ing  f ro m  (initial)  to ro ida l  versus chaot ic  orbi ts .  
N o i d  and  Koszykowsk i  [3] found ,  for  example ,  
tha t  the behav iour  o f  the (mic rocanon ica l ly  aver-  
aged)  energy  t r ans fe r  m o m e n t  d i f fe red  d e p e n d i n g  
o n  whe the r  the m o t i o n  was largely regular  or  
largely chaot ic .  In  a m o r e  recent  a n d  de ta i led  
s tudy,  Nalewajsk i  and  W y a t t  [7] have  e x a m i n e d  
pa r t i cu la r  orb i t s  r a the r  t han  averages,  an d  f ind 
g o o d  examples  o f  (A) an d  (C) t rajectories ,  a n d  
the i r  reverse,  and  also o f  initial  cond i t ions  on  a 
chao t i c  o rb i t  leading to  regular  o r  chaot ic  f inal  
condi t ions .  T h e y  no te  [7] tha t  there  is a weak  
p ro p en s i t y  fo r  an  initial  regular  (chaot ic)  o rb i t  to  
evolve  in to  a f inal  regular  (chaot ic)  orbi t ,  a n d  have  
t e rmed  this a hysteresis  effect .  In  an  s imilar  s tudy  
(where  H 0 was t aken  as the H 6 n o n - H e i l e s  hamil -  
ton ian)  Scha tz  [4] e x a m i n e d  the energy  t ransfe r  as 
a func t ion  o f  pa r t i cu la r  initial cond i t ions  at  f ixed 
init ial  in te rna l  energy.  N o  qualitatioe di f fe rence  
was seen in  go ing  f r o m  low energies (where  the 
m o t i o n  in H 0 is largely regular)  to  h igher  energies  
(w h en  chaos  p redomina te s ) .  S o m e  o f  these cone lu-  
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sions have a bearing on the present study, and will 
be discussed later. 

In this paper we restrict at tent ion to the ques- 
tion of  the validity of  the scaling law. Due to the 
three possibilities in the collisional evolution iden- 
tified above, there is a fundamental  difference 
between integrable and non-integrable cases, and 
the primary observation is that the classical sealing 
behaviour is reliably followed only when the inter- 
nal motion stays regular throughdut the collision. 
The details of the system are briefly given in 
section 2. It is straightforward to apply the CST to 
the computed moments;  of  greater interest are the 
cases where it breaks down. These results are given 
in section 3, and a summary follows in section 4. 

2. System and sealing form 

The model non-integrable "molecular"  hamilto- 
nian chosen is 

H o ( p "  q )  = ( 2 , ~ Pl  + P;- + alq 2 + a2q~_ ) / 2  + kqlq;_, 

(3) 

which has been studied extensively [17-19] for the 
parameter  values a Z = 1.6, a 2 -----0.9, X = -0 .08 .  It 
is convenient to use these values here since tori 
~,,,,, corresponding to a number  of  semiclassical 
states of this system (with h = 1) have already 
been specified [17]. (The initial condition is given 
in terms of  a parameter  f2 which yields the 
momenta  p~, P2 at the point q~ = q2 = 0 on the 
torus.) The validity of  the CST is independent  of  
the form of  the interaction potential, here taken as 
an exponential repulsion, 

V(  R ,  q )  = e x p [ - - a ( R  -- ql -- q2)]- (4) 

The features of the dynamics are, however, very 
sensitive to the actual form of  the potential. We 
choose the form above in order to avoid complica- 
tions due to long-lived sticky collisions which can 
occur when V ( R ,  q) has an attractive part. 

The average energy transfer is the change in H0, 

ET(n  1, na)  -~ ( H o ( t  = oo) - - H o ( t  = to ) )  

= - -  ( T ( t  = o o )  - -  T ( t  = t o )  ) .  (5) 

) denotes an average over several trajectories, 

initial conditions for which uniformly sample the 
invariant- torus ~/,,n_, at initial time t 0, at fLxed 
initial relative kinetic energy E k = T( to) .  Averages 
of  higher-order moments  of  the ET or  other  dy- 
namical quantities are similarly defined. The varia- 
tion of  the ET is described by a polynomial form 

ET(!1,, n 2 ) =  E Yonl  n j  = E~'ijI(lJ2, (6) 
i ,j  ij 

where the n i are the (semiclassical) quantum num- 
bers and the I i are the actions defined via eq. (2). 
The scaling coefficients ~,, ~ naturally depend on 
E k. For a sequence of states, when n I or n 2 is 
fixed, eq. (6) reduces to a polynomial in a single 
quan tum number  (or action). For  integrable sys- 
tems it is possible [11,12] to derive a scaling law at 
a given time for a particular vibrational phase. For  
non-integrable systems it is simpler (and safer) to 
s tudy the scaling of  phase-averaged quantities. The 
difficulty is that the initial conditions derived from 
Jr,_ can correspond to widely disparate initial an~es  
(conjugate to the actions defined by eq. (2)) on the 
tori ~,,,,,.. In particular, the dependence of  the ET 
on jr,_ at a fixed value of  the initial internal energy, 
Ho(t  = to), will not necessarily be smooth even if 
all f2 correspond to toroidal motion (see ref. [4]). 

3. Results 

We recall a few features of  the isolated system 
described by H 0 (with a~ = 1.6, a 2 = 0 . 9 ,  X----- 
--0.08). The dissociation energy is 25.3125 units, 
and classical chaos becomes widespread above the 
energy of  E c ~ 19 units [17,19]. The semiclassical 
quantization is discussed in ref. [17]. The two 
sequences of  states studied here (some relevant 
details are given in table 1) are {nl,  n2~-0},  
(n~ = 10, n2}. By referring the f2 values in table 1 
to the Poincar6 surfaces of  section (PSS) in ref. 
[17], it can be seen that  the states (n  1, 0} are 
associated with extremely stable tori, whereas tori 
for (10, n2} states are located near regions of  
widespread chaos at the higher energies. 

Moments  of  the energy transfer are computed 
for the ~ l l i s ion  system, eqs. (1), (3) and (4), for 
three values of  the initial kinetic energy (here in 
arbitrary reduced units) E k = 0.5, I and 2~ for the 



20 R. Ramaswamy / Collision a.'namics of  non-integrable systems 

T a b l e  1 
Semic la s s i ca l  energ ies  a n d  in i t i a l  c o n d i t i o n s  o f  s equences  of  

s t a t e s  for  the  m o l e c u l a r  h a m i l t o n i a n  (3), w i th  a I = 1.6. a 2  = 0.9, 

~k = - 0 . 0 8  ( t aken  f rom ref. [17]) 

n l  n2  E. ,n  a A ( n l n 2 )  

0 0 1.1051 0A171 

1 0 Z3673  0.1847 

2 0 3.6296 0.1138 

6 0 8.6786 0.0380 

8 0 11.2032 0.0263 

12 0 16.2522 0.0144 

10 2 15.4952 0.0818 
10 4 17.2350 0.1271 

10 6 18_9448 0.1601 

10 8 20.6209 0.1849 

10 I0  22.2602 0.2059 

10 12 23.8654 0.2361 

two sequences of  levels. The remaining parameters 
in the collision hamiltonian and the potential are 
set a t / t  --- 1 and ct --- 0.5; the results of  this compu-  
tation are presented in fig. 2 and tables 2 and 3. 

3.1. Application of  the C S T  

Given j data points (here values of the ET 
moment),  one can always fit an ruth-order (m < j )  
polynomial to these, or pass a unique j th -o rder  
polynomial through these points. What  dis- 
tinguishes a scaling behaviour from curve-fitting is 
the gradual convergence of  the coefficients (such as 
3' in eq. (6)) in the polynomial as the number  of 

2C 

~0 

~ . - 5  

t - -  
v 

h-- 
ILl 

.~'0 

I-G 5 

O 0  '-5 
0 2 4 6 8 I0 12 0 2 4 6 8 I0 12 

Fit R 2 

Fig.  2. ET  m o m e n t  versus  in i t i a l  s emic l a s s i ca l  s t a t e  for  the  two 

s e q u e n c e s  o f  levels  s tud ied .  W h e r e  the re  is no  d i s c e r n i b l e  

s ca l i ng  behav iou r ,  the  va r ious  d a t a  p o i n t s  a re  j o i n e d  by  s t r a igh t  

l ines .  O p e n  s y m b o l s  c o r r e s p o n d  to c o m p u t e d  m o m e n t s ,  a n d  the  

f i l led s y m b o l s  to  s ca l ed  m o m e n t s .  

data points and the order of  the polynomial  is 
increased. The convergence can easily be demon-  
strated when there is a large amount  of  input 

T a b l e  2 
Exac t  a n d  sca led  ET  for  the sequence  o f  s t a tes  {n~, 0}. Since  n z is f ixed for al l  s ta tes ,  the  s ca l i ng  f o r m  is a p o l y n o m i a l  in  n I 

n I E k ~ 0.5 E k = 2.0 

exac t  s ca l ed  exac t  s ca l ed  

E T ( n  l, 0) va lues  E T ( n  l- 0) va lue s  

0 - 0.959( - 2) b) i n p u t  0.316( -- 1) i n p u t  

I - 0 ,560(- -  1) i n p u t  -- 0.205 i n p u t  
2 - 0.103 -- 0.985( -- 1 ) -- 0 .404 -- 0.395 

6 - 0.240 i n p u t  -- 1.149 i n p u t  

8 - 0.326 - 0.300 -- 1.576 -- 1.587 

10 n.a.  at - 0.370 n.a.  -- 2.010 

12 -- 0.428 i n p u t  -- 2.286 i n p u t  

=) f2 for  this  level  no t  g iven  in  ref. [17l. 
b) H e r e  a n d  e l sewhere  in  the  tables ,  x ( - -  m )  = x x l 0  -ra .  
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- Tab l e  3 
Exact  and  s c ~ e d  E T  for  the sequence  o f  s ta tes  {10, n2}  at  

El, = 0.5 ~" 

n z Exact  Scaled 

ET(10, n )  values 

0 n.a. -- 0.391 

2 --0.861 inpu t  

4 - -  1.178 -- 1.172 
6 - -  1 . 3 8 3  inpu t  
8 -- 1.555 inpu t  

10 -- 1.520 -- 1.747 
12 -- 1.641 -- 2.020 

informat ion (e.g. ref. [14]); here we are limited by 
the small number  of  states within any sequence. 
However,  the data  given in tables 4 - 6  are repre- 
sentative of  the cases where one  can discern the 
presence or  absence o f  proper  scaling behaviour. 
When successive data  points do  not  lie on a smooth 
( low-order polynomial)  curve, then the coefficients 
change erratically (tables 5 and 6). For  a small set 
of  input data, this is one indicat ion of  a depar ture  
f rom the CST. 

The  variat ion of  the ET  for the sequence {n~, 
0} is well described in a three-term scaling formula 
at all kinetic energies. Fo r  oscillator systems like 
(3), these states are also the most  " h a r m o n i c "  and 
the near-linear variation of  the ET  is typical [11,15]. 
In table 4 the convergence behaviour  o f  the coeffi- 
cients is shown at E k = 2.0. It is clear that  the 

Tab le  4 
Convergence  character is t ics  o f  the  first three coefficients a) fo r  
the  sequence  {n  l, 0} at  E k = 2.0. In  addi t ion  to the exact  
m o m e n t s  in table 2 , the  m o m e n t  E T ( - - 1 / 2 ,  0 ) =  0.140 is 
included as inpu t  

nl b~ Po 0~ #z 

- -  1 / 2  0.140 
0 0 .136(- -1)  --0.253 
1 0.136( -- 1) --0.241 0.228( -- 1) 
2 0.136( 7" 1) -- 0.239 0.254( -- 1) 
6 0 . 1 3 6 ( -  1) - 0.238 0.257(--  1) 
8 0.136( - -  1) -- 0.238 0.258(--  1) 

12 0 .136(- -1)  --0.237 0 .259(- -1)  

~) T h e  sealing express ion  used  is E T ( n  I. 0) = T-,,,fi,,,n~ n. 
b) T h e  rows  are  indexed herd b y  n 1 to s h o w  h o w  the fl change  

as  E T ( n  I,  0) is added  in the  inpu t  set  and  the  o rde r  o f  the 
po lynomia l  is increased by  one.  

21 
, _ . - . L 

L 

T a b l e S -  _ _ _ . L :  _ _ . . 

Convergence  behav iour  o f  the  coefficients a) for  the sequence  
{10, h a }  a t -E( - -20 .5 .  In  add i t i on : to  ihe  da ta  in t ab le  3, we 
inelude ET(10, - - 1 / 2 ) =  --0.2"42 - " ~ 

-a *') t~o #t #,_ 
-- 1 / 2  -- 0.242 

2 -- 0.366 -- 0.247 
4 -- 0.386 -- 0.277 
6 --0.389 --0.281 

8 --0.387 --0.279 
10 --0.373 --0.266 
12 -- 0.330 -- 0.230 

0 . 1 7 8 ( -  1) 

0 . 2 4 7 ( -  1) 
0.214( - 1) 

- -0 .215( - -2 )  
-- 0.793( -- 1 ) 

a) T h e  scaling express ion  used is ET(10, n2)=~m~m rim. 
b) The  rows  are indexed here  by  n 2 to s h o w  h o w  the 13 change  

as  ET(10, n 2 )  is added  in the inpu t  set  and  the o rde r  o f  the 
po lynomia l  is increased by  one.  

various moments  do  indeed lie on a smooth curve, 
and the predictive accuracy (table 2) is r e ~ o n a b l y  
good. F rom these data  we can determine ET(nl ,  0) 
even if E,~ o is not  known: hence for all states 
n~ ~<12, n 2 = 0 .  

In contrast ,  for  the sequence {10, n2} the ET 
variat ion does not  seem to follow any  simple pat-  
tern at E k = 1 and 2. At  the lowest kinetic energy, 
however, the ET f rom levels with n 2 ~< 8 lie on  a 
smooth  curve, quite different  f rom the moments  
f rom n 2 = 10 and 12 (see fig. 2). In table 5 the 
coefficients deriving f rom the first 5 input  mo- 
ments appear  to be converging; however the varia- 
t ion in the coefficients as the last two points  are 
added  signifies that these do not  follow the same 
pa t te rn  as the others. (This is merely a quanti ta t ive 

T a b l e  6 

Behaviour  o f  the e ~ f f i c i e n i s  ~) for  ',he sequence  [10, n2} at  
E k = 2.0 

n 2  b) E T ( 1 0 ,  n 2 )  _ ,8 0 f i l  *8_- 

2 - 1.362 - 1.362 
4 - 2.214 - 0.510 - 0.426 
6 - - 2 . 3 4 4  -0 .212`  - 0 . 9 6 8  0 . 9 0 3 ( -  1) 
8 - 2.596 1.056 - 1.741 0.301 

10 - 2 . 8 8 7  1 .983  " - 2 . 7 0 7  0.639 
12 - 2 . 9 1 8  2.694 - 3 . 5 1 7  0.972 

") T h e  sealing express ion  itsed is ET(10, -na)  = T~,,,p~,n ~. 
b) T h e  rows  are  indexed here  by  n 2 to  s h o w  h o w  the /~  change  
-- as  ET(10, n2 )  is added  in the i npu t  set  a n d  the o r d e r  o f  the  

po lynomia l  is i n c ~  b y  one :  _ - .  
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verification of  the change in behaviour seen in fig. 
2.) Above n 2 = 8. no accurate prediction is possi- 
ble; the difference between the actual ET and that 
expected from extrapolation is substantial (table 
3). Note however that the interpolation below 
n 2 = 8 is accurate: ET(10, 0) predicted from these 
data  is in good agreement with that obtained from 
scaling the results for (n] ,  0} levels at E k = 0.5. At  
the higher kinetic energy, even this degree of accu- 
racy vanishes: the coefficients in table 6 change 
erratically as more points are added, and no sim- 
ple scaling form emerges. 

3.2. Breakdown of the CST  

It is clear from the results presented above that 
the inelastic collision behaviour of states {n 1, 0} 
and {10, n2} is quite different. We therefore ex- 
amine individual trajectories in more detail. 

In the present collision case, since a large variety 
of  initial states is studied at different kinetic en- 
ergies, all the types of behaviour identified in fig. 1 
can be observed. Three typical trajectories for 
initial state (10, 10) and E k = 2 are shown in fig. 3 
where we have graphed R(t)  and Eo(t ) versus 
time, and the trajectories are marked A, B and C 
(cf. fig. 1). To determine the intermediate internal 
motion, the trajectories are stopped at selected 
times during the collision, and the orbits allowed 
to develop in the absence of the collision potential. 
The PSS at such times for these trajectories are 
shown in fig. 4. 

For the sequence {n~, 0} all trajectories ex- 
amined were only of type A, i.e. the motion stayed 
regular throuo~aout the collision. This is not 
surprising since the initial internal energy is well 
below E~ for all states, and at the kinetic energies 
of  this study, the internal energy cannot exceed E¢. 
The orbits thus never sample regions of  widespread 
chaos. Additionally, the initial toil F.,,,0 are located 
in regions of  great stability, and the collisions here 
do not sufficiently perturb this internal motion. 
(Since not every trajectory was examined at all 
intermediate times, it is possible that in some cases 
the orbits did pass through regions of limited 
chaos that occur below Ec. ) 

In contrast, many trajectories for levels in the 
{10, n2} sequence lead to chaotic final orbits, as 
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Fig.  3. T h r e e  typical  t ra jec tor ies  for  t he  col l is ion o f  ini t ia l  s t a t e  
nln z = 1 0 ,  10 a t  E k = 2. T h e  in te rna l  energy ,  E 0 a n d  the  
s ca t t e r i ng  c o o r d i n a t e  a re  s h o w n  as  a f u n c t i o n  o f  t ime,  a n d  a re  
m a r k e d  A,  B a n d  C wi th  re fe rence  to fig. 1. 

for example C in fig. 3. This occurs for all levels 
except n 2 = 2 a t  E k - 1 and 2, and for n 2 > 8 at 
E k = 0.5. Even when the final orbit is regular, in a 
majority of  the cases, the orbits pass through 
chaotic regions (B in fig. 3); for these levels, the 
final state is invariably mixed. This is the only 
qualitative difference noticed in the trajectories for 
the two sequences, and it seems to be the reason 
for the quantitative differences in the ET varia- 
tion. 

When the internal motion is chaotic, the simple 
premises on which the CST is based [11,12] neces- 
sarily break down; the Taylor expansion and the 
perturbation theory which led [12] to the poly- 
nomial expression (6) is no longer valid. 

Energy transfer in the presence of  chaos can be 
enchanced [7] - either into the system or into 
translation - primarily due to the increased num- 
ber of  frequencies that are present in the vibra- 
tional motion. (In an earlier s tudy [21] of  
a tom- t r i a tom collisior~s, an enhancement of  the 
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and 3). The initial time is t o = 0 .  

E T  with  increasing initial  v ibrat ional  exc i ta t ion  
was  observed,  a l though  n o  specif ic  reference to the 
presence  or role o f  chaot ic  m o t i o n s  was  m a d e  
there.) In o n e  case, we  see a decrease in the energy  
transferred into  translat ion ( V - T  transfer): the 
exact  ET for levels n 2 = l 0  and  12 is smaller than 
that  expected  from the scal ing in table 3. Such  a 
decrease  in the E T  cou ld  be  ant ic ipated  if  energy 
transfer be tween  the  internal  m o d e s  d u e  to V - V  
processes  b e c o m e s  large * 

* The (quantum) energy transfer moment from state n is 
ET = ~ , ~ P ~ m ( e m -  %) where P.m are the transition proba- 
bilities an d c .  is the energy of  level n .  W h e n P . . ,  is large and 
(%n -- ~ . )  is small, the overall ET will be smaller. Of  course. 
the ET can be small for other reasons as well (e.g. when the 
elastic process dominates) so that the conclusion of  e n h a n c e d  

V - V  transfer from a reduction in the ET is not always 
justified. 

A s  is wel l  k n o w n  [1,2,9,10] for sys tems such  as 
(3),  E c is not  a strict d iv id ing  l ine  b e t w e e n  regular 
a n d  chaot i c  mot ions ,  but  merely  a rough  gu ide  as 
to w h e n  large-scale,  widespread chaot i c  m o t i o n s  
are likely. T h u s  at all energies  lower  than E¢, there 
are regions  o f  l imited chaos;  above  E~ there are 
regions  o f  "" vague  toW' [7,20], i.e. m o t i o n s  that  lie 
c lose  to a t o m s  for l ong  times,  b u t  eventual ly  (over  
s o m e  t imescale  ~r) b e c o m e  chaot ic .  I n  either o f  
these  cases, the effect  o n  the co l l i s ion  process  is 
l ikely  to be  n o t  very different  f rom that  o f  regular 
m o t i o n s  if the  interact ion t ime is relatively short  
c o m p a r e d  to the t imescale  o f  the  internal  m o t i o n  - 
the  v ibrat ional  period.  W h e n  the  orbit  is in  such  
regions  o f  "'limited'" chaos ,  if the  co l l i s ion  c o m p l e x  
is long- l ived  the  interact ion t i m e  m a y  bozo_ne 
longer  than ¢. T h e n  the  effect  o f  such  c h a o s  o n  the  
co l l i s i on  s h o u l d  b e  substant ia l ,  a n d  deparfure s 
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f r om  the scaling behav iour  will be  observable .  T h e  
chaot ic  region is charac te r ized  by  having a dense,  
con t inuous  spec t rum [1,2]; thus a wider  range  o f  
f requencies  is avai lable  for  the in te rac t ion  be tween  
the  internal  degrees  o f  f r e edom and  the t ransla-  
t ional  mode.  In addi t ion ,  some  fea tures  o f  the 
o rb i t  mot ion  can occu r  on  t imescales  c o m p a r a b l e  
to  the in terac t ion  t ime (which can  be  shor t e r  than  
the vibra t ional  per iod) .  Consequen t ly .  when  the 
t ra jectory,  encoun te r s  a region o f  widespread  chaos  
directly,  the effects  are  more  p r o n o u n c e d ,  and  
depa r tu re  f rom the scaling behav iou r  is seen even 
when  the in terac t ion  t ime is relat ively short .  

It is useful to dist inguish be tween  those  aspects  
o f  the collision that  are  due  to the po ten t ia l  (4). 
and  those intr insic to such non- in tegrab le  molecu-  
lar  systems. For  example ,  the fact  tha t  the ET  is 
usual ly negative (energy is t rans fe r red  into t ransla-  
t ion) is largely due  to the exponen t i a l  repuls ion 
form of  V(R. q):  with d i f ferent  fo rms  o f  V, the 
E T  can  well be positive. Similarly,  the single turn-  
ing po in t  in R(t) is also a fea ture  par t i cu la r  to this 
case. In the in terac t ion  region, the orb i t  can  cycle  
back  and for th  be tween regular  and  chaot ic  re- 
gions (case B) regardless o f  the fo rm of  II: how  
of ten  it does  so is pecul iar  to the po ten t ia l  fo rm 
and  the kinetic energy.  (Here .  in all cases ex- 
amined ,  this ha ppe ned  at  most  once  per  t ra jectory. )  
Finally.  be yond  the in terac t ion  region, the mo t ion  
does  not  change  in charac ter ;  thus. if  the orb i t  is 
regular  (chaot ic)  at R(t2), it remains  regular  
(chaot ic)  at R = oo. 

4. Discussion and summary  

In this pa pe r  we have focused on  the variation 
of  collisional proper t ies  with initial ac t ion  (or  
semiclassical state) in a s imple non- in tegrab le  sys- 
tem. W h e n  the collision is such that  the in ter -  
media te  a nd  final mo t ion  are regular ,  then  we f ind 
that  this var ia t ion is charac ter ized  by  a s imple  
po lynomia l  d e p e n d e n c e  on  the initial q u a n t u m  
n u m b e r  (or  act ion),  which  then  lends i tself  to 
accura te  in te rpo la t ion  and  ex t rapo la t ion .  H o w -  
ever, when  the in te rmed ia te  o r  final m o t i o n  is- 
chaot ic ,  then  the cha rac te r  of  the  coll is ion changes  
and  the var ia t ion  with initial  s ta te  is no  longer  

descr ibed  by  a s imple  po lynomia l  form.  Viewed in 
the  con tex t  o f  the C S T  [11,12], therefore ,  there  are  
subs tant ia l  d i f fe rences  in the col l is ion o f  non- in te -  
grab le  sys tems d e p e n d i n g  on  w h e th e r  regions o f  
widespread  chaos  par t i c ipa te  o r  not .  ( In  o rd e r  to  
e m p l o y  the C S T  the initial  ac t ions  mus t  be  well 
def ined :  in the presen t  s tudy,  therefore ,  semiclassi- 
cal states not  associa ted  with tor i  - the i r regular  
levels [16] - c a n n o t  be  cons idered . )  

However .  there  is usual ly  n o  a pr ior i  w ay  in 
which  one  cou ld  pred ic t  i f  a pa r t i cu la r  coll is ion 
will be in f luenced  by  chaos.  This  depends  to a 
large ex ten t  on  the loca t ion  o f  the initial torus  in 
the phase  space  o f  H o, o n  the f o r m  o f  the interac-  
t ion  potent ia l ,  a n d  on  the relat ive kinet ic  energy.  
In the present  example ,  the tori  for  the sequence  
( n l ,  0} are  located  deep  in regions o f  stabil i ty,  and  
the  coll isions tend  to be  de-excit ing,  an d  thus 
widespread  chaot ic  mot ions  do  not  p lay  a role. All 
s ta tes  o f  the sequence  fol low the CST.  T h e  (10, 
n 2 } s tates  are  located  n ea r  regions o f  widespread  
chaos  - this a lone  vir tual ly  ensures  tha t  so o n e r  o r  
later,  some t ra jector ies  wiU lead the in ternal  orb i t s  
t h rough  regions o f  chaos.  

G iv en  the proviso  that  one  c a n n o t  ascer ta in  
b e f o r e h a n d  whe the r  chao t ic  in te rna l  mo t ions  will 
a f fec t  the coll is ion process,  there  still are  meri ts  in 
using the C S T  in non- in tegrab le  sys tems evolving 
in such a way. W h e n  the C S T  applies,  its ut i l i ty 
he re  is at the least c o m p a r a b l e  to tha t  in in tegrable  
sys tems [11-15] .  It  p rov ides  a means  o f  d a t a  ex- 
tens ion  since the pred ic t ive  accu racy  is reasonable ;  
this can  grea t ly  r educe  c o m p u t a t i o n a l  ef for t .  A 
ex t r eme ly  useful  fea ture  o f  the C S T  is tha t  eq. (7) 
per ta ins  to  a rb i t r a ry  ac t ions  I t, I 2. T h e  semiclassi- 
cal quan t i za t ion  can  be  entirely bypassed  i f  de-  
sired,  since all tha t  is requi red  is tha t  the E T  for  
an y  given set o f  initial  ac t ions  be  k n o w n  ( thus  it is 
no t  necessary  to loca te  the  pa r t i cu la r  semiclassical  
tori  E,,I,,, - be fo re  s tudy ing  the col l is ion p rob lem) .  
T h e  coeff ic ients  ~, can  be  d e t e rm in ed  f ro m  the  E T  
for  a rb i t r a ry  tori, and  then  used to  genera te  the 
E T  f ro m  a n y  des i red  semiclassical  level. (We  have  
n o t  used this p r o c e d u r e  here  s ince the  p r i m a r y  
c o n c e r n  was in es tabl ishing the val id i ty  o f  the 
CST,  and  fur ther ,  the tori  Y'.,,,,,~ fo r  this sys tem are  
readi ly  available.)  This  aspect  o f  the C S T  is l ikely 
to  be  a great  advan tage  in appl ica t ions  to molecu-  
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lax systems with several degrees of  freedom wherein 
the semiclassical quantization itself can pose a 
difficulty [2]. 

Although applications here are to the first mo- 
ment  of the ET, the CST relates the change of  any 
dynamical  variable through equations analogous 
to (6). Higher-order moments  typically require a 
larger number  of  terms in the expansion, and 
hence a larger set of  input information. The major 
restriction is that we can only treat phase-averaged 
quantifies (here initial-torus averages), so that 
state-to-state information is not easily accessible. 
This can only partially be circumvented: some 
connexions between the CST [11,12] and the 
quantum ECS scaling theory [22] for inelastic 
state-to-state quantities have been explored in an 
earlier article [14], where we have shown how the 
scaling coefficients can be interpreted in terms of  
quantum transition probabilities. The ECS theory 
has recently been successfully applied [23] to 
low-lying levels in an a tom-(anharmonic)  triatom 
collision system; it would therefore be of interest 
to determine where (and how) the theory fails for 
systems that reduce to a non-integrable hamilto- 
nian in the classical limit, and whether there are 
any parallels with the present classical picture. 
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