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The classical collision dynamics of a model atom-molecule non-integrable collision system is studied, and the energy
transfer (ET) moment is examined as a function of the initial semiclassical level of the molecule. A recently derived classical
scaling theory is shown te be valid in the case when the molecular motion remaius regular throughout the collision, and the ET
variation is then characterized by a polynomial dependence on the initial (semiclassical) guantum numbers. When chaotic
molions participate, the ET no longer follows the scaling law. The mility of the scaling theory in providing the proper
interpolation form for extending classical trajectory data in non-integrable collision systems is discussed.

1. Introduction

Non-integrable hamiltonian dynamical systems
have been studied in a variety of applications to
chemical problems [1,2]. One area of interest is in
modeling (externally perturbed) evolving systems
— as in bimolecular collision [3-7] or multiphoton
absorption [8] phenomena. A general conclusion
that has emerged from some recent studies is that
classically there are two different dynamical be-
haviours, which can be considered the reflection of
quasiperiodic (toroidal) and aperiodic (chaotic)
motions in conservative non-integrable hamilto-
nian systems [1,2,9,10].

An example is afforded by an atom-molecule
collision system, for which the overall classical
hamiltonian is

H=T+V(R,q)+H,(p, q)- (1)

Here R is the collision coordinate, T=p}, /2 the
relative-kinetic energy, pg the relative momentum
and p is the reduced mass. The molecular hamilto-
nian H,, is chosen to be non-integrable in N de-
grees of freedom; in usual notation, the momenta
and coordinates are denoted p and g. At r =1, and
t — o0, i.e. at the beginning and end of the colli-
sion, R—o and V—=0. Then T and H, are
conserved quantities although during the collision

these change. (For purposes of clarity, “orbit” will
denote the internal motion of H, viewed sep-
arately, and “trajectory” will refer to the overall
motion of hamiltonian (1).)

For problems such as above, scaling laws [11,12]
have been derived in recent work. This classical
scaling theory (CST) relates the variation of arbi-
trary dynamical quantities with certain initial con-
ditions through simple polynomial expressions.
Earlier applications [11,13-15] of the CST have
been to asymptotically integrable collision sys-
tems. The expressions used there related the varia-
tion of vibrational-phase-averaged energy transfer
(ET) with the initial action variable (for molecular
situations it is customary to work in action—angle
coordinates since actions can be identified with
quantum numbers). There are two principal ad-
vantages in using the CST. Firstly, the use of a
scaling formula greatly reduces computational ef-
fort, since it offers a means of accurate prediction
by providing the correct interpolatiot and extrapo- -
lation form. Further, analysis of the scaling coeffi-
cients in terms of quantum transition probabilities
is possible in some cases, and this affords an (at
least qualitative) understanding of quantum effects
from a small number of classical trajectories. Both
facets of the CST have been exploited in previous

_work [14,15].
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The realistic modeling of chemical situations
involves non-integrable systems, and it would be
advantageous to establish the regime of applicabil-
ity of the CST in such cases as well. The dynami-
cal variables studied here are average energy trans-
fer moments, [Hy(t= 0)—Hy(t=1t)]*. k=1,
2..., as a function of the initial semiclassical state
in the collision dynamics of a collinear atom—tm-
atom system. Thus H,, is non-integrable in N =2
degrees of freedom. The semiclassical quantization
[2.16] is effected by the usual EBKM rules. by
locating particular tori I, . for which the action
integral

L=¢p-dg. i=1.2 (2)
C,

equals (n, + a,/4)k where n, are integers and «,
the Maslov indices along the independent paths C,
on the torus. By the correspondence prnnciple [16],
the invariant torus ¥, , is the semiciassical ana-
logue of the quantum cigenstate n,n,.

In geometric terms, for an integrable. one-de-
gree-of-freedom system, the Initial state is classi-
cally represented as an invariant circle in the phase
plane. The final state is aiso a circle, but is usually
not invariant (and corresponds to a quantum non-
stationary state). For two degrees of freedom, the
initial state is the invariant torus. £, ,, . In contrast
to the previous situation, there are three possible
outcomes of the evolution of this torus when the
system is non-integrable. The final state can be a
(non-stationary) (i} quasiperiodic state, (ii) chaotic
state or (iii) a mixture of these. For all initial
conditions on X, in case (i) or (ii). al/f final condi-
tions lead to either quasiperiodic or chaotic orbits
of H, respectively; in case (iii), the final conditions
for some trajectories correspond to quasiperiodic
orbits of H;, and others to chaotic orbits.

A pictorial representation of the possible inter-
nal behaviour along a trajectory is shown in fig. 1.
We focus on the molecular hamiltonian. and con-
sider the motion of the orbit through the phase
space of H,. The initial orbit is quasiperiodic. Up
to the interaction region 1, <t <1t,, there is little
change in the internal motion, which continues to
be on a torus. In passing through the interaction
region, the trajectory can force the orbit to (A)
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Fig. 1. Schematics of the possible internal motion during the
collision. The interaction tegion is the time interval during
which 3H, /01 is sufficiently different from zero.

pass through only regular regions such that the
final orbit is regular, or pass from the regular to
the chaotic part of the internal phase space. There
are two further possibilities here, (B) the orbit can
then return to the regular region so that the final
motion is regular, or {C) it can continue in the
chaotic region, so that one has a final chaotic
orbit. Thus all trajectories being of type (A) or (B)
lead to a final quasiperiodic state and all of type
(C) te a final chaotic state.

The interest in some earlier collision studies
[3,4.7] has been in contrasting the dynamics deriv-
ing from (initial) toroidal versus chaotic orbits.
Noid and Koszykowski [3] found, for example,
that the behaviour of the (microcanonically aver-
aged) energy transfer moment differed depending
on whether the motion was largely regular or
largely chaotic. In a more recent and detailed
study, Nalewajski and Wyatt {7] have examined
particular orbits rather than averages, and find
good examples of (A) and (C) trajectories, and
their reverse, and also of initial conditions on a
chaotic orbit leading to regular or chaotic final
conditions. They note [7] that there is a weak
propensity for an initial regular (chaotic) orbit to
evolve into a final regular (chaotic) orbit, and have
termed this a hysteresis effect. In an similar study
{where H, was taken as the Hénon—Heiles hamil-
tonian) Schatz {4] examined the energy transfer as
a function of particular initial conditions at fixed
initial internal energy. No gualirative difference
was seen in going from low energies (where the
motion in H, is largely regular) to higher energies
(when chaos predominates). Some of these conclu-
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stons have a bearing on the present study, and will
be discussed later.

In this paper we restrict attention to the ques-
tion of the validity of the scaling law. Due to the
three possibilities in the collisional evolution iden-
tified above, there is a fundamental difference
between integrable and non-integrable cases, and
the primary observation is that the classical scaling
behaviour is reliably followed only when the inter-
nal motion stays regular throughout the collision.
The details of the system are bricfly given in
section 2. It is straightforward to apply the CST to
the computed moments; of greater interest are the
cases where it breaks down. These results are given
in section 3, and a summary follows in section 4.

2. System and scaling form

The model non-integrable “molecular™ hamilto-
nian chosen is

Ho(p.q)= (pf+p§+a,qf+a2q§)/2 +Xg193.

(3)
which has been studied extensively {17-19] for the
parameter values a, =1.6, 2, =0.9, A= —0.08. It

is convenient to use these values here since tori
Zam corresponding to a number of semiclassical
states of this system (with #=1) have already
been specified §17]. (The initial condition is given
in terms of a parameter f, which yields the
momenta p,, p, at the point ¢; = ¢, =0 on the
torus.) The validity of the CST is independent of
the form of the interaction potential, here taken as
an exponential repulsion,

V(R,g)=exp[—a(R—q,—q,)]. (4)

The features of the dynamics are, however, very
sensitive to the actual form of the potential. We
choose the form above in order to avoid complica-
tions due to long-lived sticky collisions which can
occur when V(R, g) has an attractive part.

The average energy transfer is the change in H,,

ET(sny, 1) = {Hy(1 = o) — Hy{t = 15))
(T}~ T(t=t)y. ()

{ ) denotes an average over several trajectories,

mitial conditions for which uniformly sample the
invariant- torus X, at initial time 14, at fixed
initial relative kinetic energy E, = T(z,). Averages
of higher-order moments of the ET or other dy-
namical quantities are similarly defined. The varia-
tion of the ET is described by a polynomial form

ET("U"2)=ZTU"';"£=Z?UI{I{’ (6)
ij i

where the #, are the (semiclassical) quantum num-
bers and the I, are the actions defined via eq. (2).
The scaling coefficients y, ¥ nawrally depend on
E,. For a sequence of states, when n; or »n, is
fixed, eq. (6) reduces to a polynomial in a single
quantum number (or action). For integrable sys-
tems it is possible [11,12] to derive a scaling law at
a given time for a particular vibrational phase. For
non-integrable systems it is simpler (and safer) to
study the scaling of phase-averaged quantities. The
difficulty is that the initial conditions derived from
/> can correspond to widely disparate initial angles
(conjugate to the actions defined by eq. (2)) on the
tori X, , . In particular, the dependence of the ET
on f, at a fixed value of the initial internal energy,
Hy(r=ty), will not necessarily be smooth even if
all £, correspond to toroidal motion (see ref. [4]).

3. Results

We recall a few features of the isolated system
described by H; (with ¢, =16, a,=09, A=
—0.08). The dissociation energy is 25.3125 units,
and classical chaos becomes widespread above the
energy of E_ =19 units [17,19]. The semiclassical
quantization is discussed in ref. [17]. The two
sequences of states studied here (some relevant
details are given in table 1) are {n,;, n,=0},
{n, =10, n, }. By referring the f, values in table 1
to the Poincaré surfaces of section (PSS) in ref.
[27], it can be seen that the states {n,, 0} are
associated with extremely stable tori, whereas tori
for {10, n,} states are located rear regions of
widespread chaos at the higher energies.

Moments of the energy transfer are computed
for the collision system, eqgs. (1), (3) and (4), for
three values of the initial kinetic energy (here in

_arbitrary reduced units) £, =0.5, 1 and 2, for the
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Table 1

Semiclassical energies and initial conditions of sequences of
states for the molecular hamiltonian (3), with a, = 1.6, 2, = 0.9,
A = —0.08 (taken from rel. [17]D)

m 2 En,n; f:’.(nl"?.)
[ 0 1.1051 04171
1 0 2.3673 0.1847
2 0 3.6296 0.1138
6 0 8.6786 0.0380
8 0 11.2032 0.0263

12 0 16.2522 0.0144

10 2 15.4952 0.0818

10 4 17.2350 0.1271

10 6 189448 0.1601

10 8 20.6209 0.1849

10 10 222602 0.2059

10 12 23.8634 0.2361

two sequences of levels. The remaining parameters
in the collision hamiltonian and the potenual are
set at p=1 and a = 0.5; the results of this compu-
tation are presented in fig. 2 and tables 2 and 3.

3.1 Applicarion of the CST

Given j data points (here values of the ET
moment), one can always fit an mih-order (rr <j)
polynomial to these, or pass a unique jth-order
polynomial through thesec points. What dis-
tinguishes a scaling behaviour from curve-fitting is
the gradual convergence of the coefficients (such as
v in eq. (6)) in the polynomial as the number of
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Fig. 2. ET moment versus initial semiclassical state for the two
sequences of levels studied. Where there is no discernible
scaling behaviour. the various data points are joined by straight
lines. Open symbols correspond to computed moments, and the
filled symbols to scaled moments.

data points and the order of the polynomial is
increased. The convergence can easily be demon-
strated when there is a large amount of input

Table 2
Exact and scaled ET for the sequence of states {n,, 8). Since n, is fixed for all states, the scaling form is a polynomial in n,
Ty Ek:O.S ‘Ek=2'0
exact scaled exact scaled
ET{(n,. 0) values ET(n,.0) values
0 —0.959(—2) " mput 0.316{—1) input
1 —0.560(—1) input —0.205 input
2 —0.103 —0985(—1) —0.404 —-0.395
6 —0.240 input —1.149 input
8 —~0.326 —0.300 —1.576 —1.587
10 na M -0.370 na. —2.010
12 —0.428 input —2.286 input

= f, for this {evel not given in ref. [17].
® Here and elsewhere in the tables, x{— m)=x x10""™.
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- Table 3
Exdct and scaled ET for the sequence of states {10, n,} at
E, =05 g

Table 5- R e

“Convergence behaviour of the coefﬁcxems“’ for lhe sequence

{10, n,} at. E, = 0.5. In addition to the d:ua in table 3. we
include ET(10, —1,/2) — —0.242

ny Exact Scaled -
FE(10, n) values ny® Bo B B ’
0 n.a —0.391 -1/2 —0242
2 —0.861 input 2 . —0.366 —0.247
4 ~1.178 —-1172 4 —~0.386 —0277 0.178(—1)
6 —1.383 input 6 —0.389 —0.281 0247 —1)
3 —1.555 input 8 —0.387 -0279 0.214(—1)
10 —1.520 —1.747 10 —0.373 —0.266 —0.215(~2)
12 —1.641 -2020 12 —0.330 -0.230 —0.793(-1)

information (e.g. ref. [14}); here we are limited by
the small number of states within any sequence.
However, the data given in tables 4-6 are repre-
sentative of the cases where one can discern the
presence or absence of proper scaling behaviour.
When successive data points do not lie on a smooth
(low-order polynomial) curve, then the cocfficients
change erratically (tables 5 and 6). For a small set
of input data, this is one indication of a departure
from the CST.

The variation of the ET for the sequence {n,,
0} is well described in a three-rerm scaling formula
at all kinetic energies. For oscillator systems like
(3), these states are also the most “harmonic” and
the near-linear variation of the ET is typical [11,15].
In table 4 the convergence behaviour of the coeffi-
cients is shown at E,_=2.0. It is clear that the

Table 4

Coenvergence characteristics of the first three coefficients ® for
the sequence {n,, 0} at E,_=20. In addition 0 the exact
moments in table 2 the moment ET(—1/2, 0)=0.140 is
included as input

) » Bo B B8,

-1/2 0.140
Q 0.136(—1) —0.253
1 0.136(—1) —-0.241 0.228(—-1)
2 0.136(-1) —0239 0.254(—1)
6 0.136(—1) —0.238 0.257(—1)
8 0.136(—1) —0238 D.258(—1)

12 - 0.136(—1) —0.237 0.259(—-1)

) The scaling expression used is ET(10, n,) =X, B, »7.

®) The rows are indexed here by n, 10 show how the 8 change
as ET(10, n,) is added in the input set and the order of the
polynomial is increased by one.

various moments do indeed lie on a smooth curve,
and the predictive accuracy (table 2) is reasonably
good. From these data we can determine ET{#,, 0)
even if ¥, 5 is not known: hence for all states
n, <12, n,=0.

In contrast, for the sequence {10, n,} the ET
variation does not seem to follow any simple pat-
tern at £, =1 and 2. At the lowest kinetic energy,
however, the ET from levels with n, <8 lie on a
smooth curve, quite different from the moments
from n,=10 and 12 (see fig. 2). In table 5 the
coefficients deriving from the first 5 input mo-
menlts appear to be converging; however the varia-
tion in the coefficients as the last two points are
added signifies that these do not follow the same
pattern as the others. (This is merely a quantitative

Table 6 .
Behaviour of the coefficients ™ for the sequence {10, n5} at
E, =20

n,®  ET(10,7,) . By 8, B
2 -1.362 —1.362
4 —2.214 —0.519 —0.426
6 —2.344 . —0.212 —0968  0.903(—1)
g —2.596 1.056 -1.741 0301
10 —2.887 1.983 - —2.707 0639
12 -2, 918 2.694 —3.517 08972

®} The scaling expression used is ET(#n,, 0) =Em3mnT_

b} The rows are indexed here by r, to show how the 8 change
as ET{ay, 0) is added in the input set and the order of the
polynomial is increased by one. .

» The scaling expression used is ET(10, ny)=EX,,.8,,n7.

® The rows are indexed here by 1, 10 show how the 8 change

- as ET(10, #,) is added in the input set and the order of the
polynomial is increased by one. . -
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verification of the change in behaviour seen in fig.
2.} Above n, = 8. no accurate prediction is possi-
ble; the difference between the actual ET and that
expected from extrapolation is substantial (table
3). Note however that the interpolation below
n, =8 is accurate: ET(10, 0) predicted from these
data is in good agreement with that obtained from
scaling the results for {n,;, 0} levels at £, = 0.5. At
the higher kinetic energy, even this degree of accu-
racy vanishes: the coefficients in table 6 change
erratically as more points are added, and no sim-
ple scaling form emerges.

3.2. Breakdown of the CST

It is clear from the results presented above that
the inelastic collision behaviour of states {#,, 0}
and {10, n,} is quite different. We therefore ex-
amine individual trajectories in more detail.

In the present collision case, since a large variety
of initial states is studied at different kinetic en-
ergies, all the types of behaviour identified in fig. 1
can be observed. Three typical trajectories for
initial state (10, 10) and E, = 2 are shown 1 fig. 3
where we have graphed R(r) and E,{t) versus
time, and the trajectories are marked A, B and C
(ct. fig. 1). To determine the intermediate internal
motion, the trajectortes are stopped at selected
times during the collision, and the orbits allowed
to develop in the absence of the collision potential.
The PSS at such times for these trajectories are
shown in fig. 4.

For the sequence {n,, 0} all trajectories ex-
amined were onfy of type A, i.e. the motion stayed
regular throughout the collision. This is not
surprising since the initial internal energy is well
below E, for all states, and at the kinetic energies
of this study, the internal energy cannot exceed E_..
The orbits thus never sample regions of widespread
chaos. Additionally, the initial tori ., , are located
i regions of great stability, and the collisions here
do not sufficiently perturb this internal motion.
{Since not everv trajectory was examined at afll
intermediate times, it is possible that in some cases
the orbits did pass through regions of limited
chaos that occur below E_.)

In contrast, many trajectories for levels in the
{10, n,) sequence lead to chaotic final orbits, as

time —
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Fig. 3. Three typical trajectories for the collision of initial state
nyn; =10, 10 at E, =2. The internal energy, £, and the
scattering coordinate are shown as a function of time, and are
marked A, B and C with reference 10 fig. 1.

for example C in fig. 3. This occurs for all levels
except n,=2 at £, =1 and 2, and for n,> 8 at
E, =0.5. Even when ihe final orbit is regular, in a
majority of the cases, the orbits pass through
chaotic regions (B in fig. 3); for these levels, the
final state is invariably mixed. This is the only
qualitative difference noticed in the trajectories for
the two sequences, and it seems to be the reason
for the quantitative differences in the ET varia-
tion.

When the internal motion is chaotic, the simple
premises on which the CST is based [11,12] neces-
sarily break down; the Taylor expansion and the
perturbation theory which led [12] to the poly-
nomial expression {(6) is no longer valid.

Energy transfer in the presence of chaos can be
enchanced [7] — ecither into the system or into
translation — primarily due to the increased num-
ber of frequencies that are present in the vibra-
tional motion. (In an earlier stady [21] of
atom—triatom collisions, an enhancement of the
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Fig. 4. Poincaré surfaces of section in the g, —~ p; plane for internal motions along the trajectories in fig. 3. The + denotes the location
of the origin and the numbers below the PSS indicate the particular time along the trajectory (marked in correspondence with figs. 1
and 3). The initial time is £, = 0.

ET with increasing initial vibrational excitation As is well known [1,2,9,10] for systems such as
was observed, although no specific reference to the (3), E_ is not a strict dividing line between regular
presence or role of chaotic motions was made and chaotic motians, but merely a rough guide as
there.) In one case, we see a decrease in the energy to when large-scale, widespread chaotic motions
transferred intc translation (V-T transfer): the are likely. Thus at all energies lower than E_, there
exact ET for levels n, = 10 and 12 is smaller than are regions of limited chaos; above E_ there are
that expected from the scaling in table 3. Such a regions of * vague tori” {7,20), i.e. motions that lie
decrease in the ET could be anticipated if energy close to a torus for long times, but eventually (over
transfer between the internal modes due to V-V some timescale 7) become chaotic. In. either of
processes becomes large *. these cases, the effect on the collision process is

likely to be not very different from that of regular

* The (quantum) energy transfer moment from state n is motions if the interaction time is relatively short

ET=X,.P,.(¢, —¢,) where P, are the transiticn proba- compared to the timescale of the internal motion —
bilities and «,, is the energy of level n. When £, is large and the vibrational period. When the orbit is in such
(€, — €,) is small, the overall ET will be smaller. Of course, regions of “limited” chaos, if the collision complex

the ET can be small for other reasons as well (e g. when the . . . A .
elastic pr dosminates) so that the conclusion of enhanced is Iong-lived the interaction time- may beco.ne

V-V transfer from a reduction in the ET is not always longer than 7. Then the effect of such chaos on the
justified. - collision should be substantial, and departures
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from the scaling behaviour will be observable. The
chaotic region is characterized by having a dense,
continuous spectrum [1.2]; thus a wider range of
frequencies is available for the interaction between
the internal degrees of freedom and the transla-
tional mode. In addition, some features of the
orbit motion can occur on timescales comparable
to the interaction time (which can be shorter than
the vibrational period). Consequently. when the
trajectory, encounters a region of widespread chaos
directly, the effects are more pronounced, and
departure from the scaling behaviour is seen even
when the interaction time is relatively short.

It is useful to distinguish between those aspects
of the collision that are due to the potential (4).
and those intrinsic to such non-integrable molecu-
lar systems. For example. the fact that the ET is
usually negative (energy is transferred into transla-
tion) is largely due to the exponential repulsion
form of V(R. ¢g): with different forms of ¥, the
ET can well be positive. Similarly. the single turn-
mg peint in R{s} is also a feature particular to this
case. In the interaction region, the orbit can cycle
back and forth between regular and chaotic re-
gions (case B) regardless of the form of F: how
often it does so is peculiar to the potential form
and the kinctic energy. (Here. in all cases ex-
amined, this happened at most once per trajsctory.)
Finally. beyond the interaction region, the motion
does not change in character; thus, if the orbit is
regular (chaotic) at R(r,), it remains regular
{chaouc) at R = oo.

4. Discussion and summary

In this paper we have focused on the variation
of collisional properties with initial action {or
semiclassical state) in a simple non-integrable sys-
tem. When the collision is such that the inter-
mediate and final motion are regular, then we find
that this variation is characterized by a simple
polynomial dependence on the initial quantum
number (or action), which then fends itself to
accurate interpolation and extrapolation. How-
ever, when the intermediate or final motion is
chaotic, then the character of the collision changes
and the variation with initial state is no longer

described by a simple polynomial form. Viewed in
the context of the CST [11,12], therefore, there are
substantial differences in the collisicn of non-inte-
grable systems depending on whether regions of
widespread chaos participate or not. {(In order to
employ the CST the initial actions must be well
defined: in the present study, therefore, semiclassi-
cal states not associated with tori — the irregular
levels [16] — cannot be considered.)

However. there is usually no a priori way in
which one could predict if a particular collision
will be influenced by chaos. This depends to a
large extent on the location of the initial torus in
the phase space of H,, on the form of the interac-
tion potential, and on the relative kinetic energy.
In the present example, the tori for the sequence
{#,. 0} are located deep in regions of stability, and
the collisions tend to be de-exciting, and thus
widespread chaotic motions do not play a role. All
states of the sequence follow the CST. The {10,
#, } states are located near regions of widespread
chaos — this alone virtually ensures that sooner or
later. some trajectories will lead the internal orbits
through regions of chaos.

Given the proviso that one cannot ascertain
beforehand whether chaotic internal motions will
affect the collision process, there still are merits in
using the CST in non-integrable systems evolving
in such a way. When the CST applies, its utility
here is at the least comparable to that in integrable
systems [11-15]. It provides a means of data ex-
tension since the predictive accuracy is reasonable;
this can greatly reduce computational effort. A
extremely useful feature of the CST is that eq. (7)
pertains to arbitrary actions J;, f,. The semiclassi-
cal quantization can be entirely bypassed if de-
sired, since all that is required is that the ET for
any given set of initial actions be known (thus it is
not necessary to locate the particular semiclassical
tori £, , before studying the collision problem).
The coefficients y can be determined from the ET
for arbitrary tori, and then used to generate the
ET from any desired semiclassical level. (We have
not vsed this procedure here since the primary
concern was in establishing the validity of the
CST, and further, the tori X, . for this system are
readily available.) This aspect of the CST is likely
to be a great advantage in applications to molecu-
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lar systems with several degrees of freedom wherein
the semiclassical quantization itself can pose a
difficulty [2].

Although applications here are to the first mo-
ment of the ET, the CST relates the change of any
dynamical variable through equations analogous
to (6). Higher-order moments typically require a
larger number of terms in the expansion, and
hence a larger set of input information. The major
restriction is that we can only treat phase-averaged
quantities (here initial-torus averages). so that
state-to-state information is not easily accessible.
This can only partially be circumvented: some
connexions between the CST [11,12) and the
quantum ECS scaling theory [22] for inelastic
state-to-state quantities have been explored in an
earlier article [14], where we have shown how the
scaling coefficients can be interpreted in terms of
quantum transition probabilities. The ECS theory
has recently been successfully applied {23] to
low-lying levels in an atom—{anharmonic) triatom
collision system; it would therefore be of interest
to determine where (and how) the theory fails for
systems that reduce to a non-integrable hamilto-
nian in the classical limit, and whether there are
any parallels with the present classical picture.
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