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A method of analysing classical trajectory data, based on receatly derived scaling principles, is applied to a model
atom~triatom collinear collision system. Apart from the utility of the scaling idea in extending trajectory computations, the
analysis of the scaling coefficients in terms of transition probabililies increases the scope of the classical scaling theory as a
means of obtaining (at the very least) qualitative quastum-mechanical information from classical trajectories. As an useful
adjunct, the method of continuous quantization 1s applied to generate approximate transition probabilities. These results are
semiquantitative; thus a combination of classical scaling and continuous quantization affords a powerful means of modeling
complex collision cases with a minimum of computational effort.

1. Introduction

A central problem in studying molecular colli-
sion systems is the difficulty associated with apply-
ing exact or accurate theoretical methods [1,2].
Even for molecules containing relatively few atoms,
it is customary to use classical mechanics — most
commonly the simple and well-known quasiclassi-
cal histogram technique (QH) [3]. (A number of
alternate scattering methods based on classical
mechanics have been suggested in recent years
[4-12], some of which involve modifications in
order to improve the QH.) The simplicity and
convenience of a trajectory method is an-attractive
feature insofar as application to systems with
several degrees of freedom is of concern. Since it is
desirable to obtain as much quantum-mechanical
information as is possible from such classical
calculations, it is of interest to explore different
means of analysing classical trajectory data. The
primary aim of this paper is to demonstrate the
utility of two recently proposed theories in facili-
tating such analysis, with application to a model
atom—triatom system. i )

‘We focus on the first moment of the energy
transfer (ET) in inelastic collisions, and demon-
strate the applicability of a classical scaling princi-

ple [13,14]. This relationship holds over a wide
range of colliston conditions and makes possible
the prediction of the energy transfer from a large
number of states based on a small set of trajectory
calculations [13,15,16]. One can thus treat a very
large number of states — certainly more than can
be handled by almost any quantum scatiering
method. Within the assumption that classical and
quantum averages are equal, the classical scaling
coefficients can be interpreted [16} in terms of
guanium state-to-state iransition probabilities,
which are the primary quantities of interest.
Alternately, state-to-state transition probabili-
ties are obtained here by the continuous quantiza-
tion (CQ) procedure [12] *. This method utilizes a
somewhat elementary mapping concept to analyse
the classical continuous action variable. In cases
treated earlier [12], reasonable accuracy was ob-
tained for most amplitudes that were not too
small, i.e. = 1073. However, when classical mecha-
nics is grossly incorrect, CQ offers only marginal

* The CQ method has been criticized for not reducing ta the
perturbation result for all transition amplitudes by Dickin-
son and Richards [17]. However, the CQ method does in fact
reduce to the correct classical result, as well as the correct

" perturbation limit for one-quantum transitions [18].
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improvement over QH. There is one advantage
even in the case when classical mechanics fails
badly — as for example in extremely adiabatic
situations. CQ gives good estimates of the relative
magnitudes for the transition amplitudes, and cor-
rectly predicts propensities and trends. In the pre-
sent cases ¥, wherever comparison with exact
quantum-mechanical results has been possible, this
15 seen to be true. The number of trajectories
needed for CQ is comparable to that needed to
obtain moments, and in addition, the transition
probabilities so obtained contain the essential fea-
tures of the physics of the situation.

Although here the variation of the ET with
initial state of the molecular system is studied via
the classical scaling theory (CST), a variety of
scaling laws for any dynamical variable can be
derived [13.14]. Recall that the scaling and CQ can
be applied (i) at every value of the impact parame-
ter, (1) for arbitrary forms of the interaction
potential, and (iii) for harmonic as well as
anharmonic systems. (An important case when
both methods break down is in the case of non-in-
tegrable systems [19] when the motion is chaetic,
since then proper final action variables cannot
always be defined [20]. The model system to which
these theories are applied is therefore chosen to be
as simple as possible, in order to leave the analysis
most transparent; none of these simplifications are
restrictive in any essential way. Thus the collision
geometry is collinear, and the molecular hamilto-
nian is asymptotically integrable (and separable).
This is described in section 2.

Such systems have been studied before [20-22]
by different methods; these previous studies serve
as a benchmark against which the present analysis
is compared, in section 3. The information derived
from the CST is inferential and largely qualitative,
but accurate; that obtained from the CQ is semi-
quantitative. Thus in larger, more complex colli-
sion cases, wherein the application of most dy-
namical methods (including the QH) remains un-
feasible, a combination of CST and CQ can prove
practicable. A discussion and summary follows in
section 4.

* A straightforward generalization 10 wo degrees of freedom
of the CQ procedure as given in ref. {12} is used here.

2. Theory
2.1. Collinear model

The classical model system of a symmetric tri-
atomic molecule(XYX)-atom(Z) can conveniently
be described in mass-scaled normal coordinates.
The hamiltonian is given by

H(p.q) =3  pi/n,+(qi +kq3) 2+ ¥(q), (1)

where the interaction potential has the form

V{g)=exp[—a(g:— 1 — a2)] ()
and the reduced masses are given by

my=1

gy =k =(0Qm,+m,)/m, =3,

wy=m;(2m, + m, )/ 2m(2m, + m, + my); (3)

a=(1/2L*m,k,)'¥*. m,. m, and m, are the masses
of atoms X, Y and Z, k, is the force constant for
the symmetric stretch; in obtaining (1), the in-
tramolecular potential used consists of two uncou-
pled harmonic oscillator functions, one per XY
bond. All energies are measured in units of the
symmetric stretch spacing. As usual, the p and ¢
indicate momenta and coordinates, the subscripts
1-3 denote, respectively, the symmetric and asym-
metric stretch normal modes, and translation coor-
dinates; L is the range parameter for the interac-
tion potential.

The vsual procedure [3] is followed; the hamil-
tonian (1) is transformed to action—angle variables
for the molecular degrees of freedom, ( p,q, 7-4>)
— (10, 5,0,). A given initial state is chosen by the
correspondence n;=J, +1/2 (& =1); phases 8,
and &, are sampled uniformly in [0, 2x]; trajecto-
ries are integrated in cartesian space and trans-
formed to final action variables at the end of
collision. Moments of a dynamical variable W are
computed through the integral

1 27 27 !
e fn a8, fo ag,(w,— w;)’,
I=1,2.... )

Note that AW is indexed by the kinetic energy and

AW(E ;). L) =
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the initial actions. In eq. (4), the subscripts i and f
denote initial and final values.-We will primarily
be concerned with the first moment of the energy
transfer, AW = ET, for which W is the molecular
hamiltonian. -

2.2. Classical scaling theory (CST)

The basic classical scaling formalism has been
presented in detail elsewhere {13,14] and we quote
only the pertinent results here. If either one of the
initial actions is fixed, at a given kinetic energy,
the variation of AW with the other action is ex-
pressed as a polynomial series [16],

AW(E; T, ) = LB () 5" (s)

(here J, is fixed at J), which can be written in a
quantum number form as well (n=J - 1/2):

AW(Ey; ¥, ny) =3 e, (5)n53 (6)

nr

Note that the a depend on 7. A similar expression
holds for the situation when n, is fixed and n, is
varied. Combining these, it is straightforward to
obtain

AW(E,; ny, n;) =ET,-,-"§"{- (7)
i

This is the main scaling form which will be used
later. The various a,,(», ), ie. the scaling coeffi-
cients for individua! rows of the AW matrix are
related to the y by the transformation

2 m

ar(”l,) T » my oo 87\ [ Yor
2 ”

al("lz) 1 n, nmy, ... A7 |17
mn

“.'("1,,,) 1 r, e By A Yoy

(8)

A detailed examination of the CST in the pres-
ent collision case closely follows the analysis given
earlier in the case of atom-—diatom collisions [16]).
Consider the exact quantum-mechanical expres-

sion for the ET

ET(E,; &,;nz)% -2 [ir! —nj+ mz(nz*n'z)]

ning
x Pn,n;.n'{nf_.(Ek)' (9

This can be separated into three terms, corre
sponding to whether the process P; ;, is “elastic’
in the symmetric stretch, asymmetric stretch, o1

neither, ie.

ET(Ek; ), ”2)=Z”Pn‘n1.n‘-—yn1 (10&]
+ X (02) 2, hin-n  (10b)
»

+ E (”! + wZPZ)anz.n.—-P.nz-v

¥i¥a

(10c¢]

By applying the quantum energy corrected sudden
(ECS) scaling theory [24], it is easy to see that the
first term, (10a) reduces to the form

—m Py, an, — () — I)Plﬂz.ﬂnz + .-

which includes only powers of n;; likewise, the
second term (10b} contributes only powers of n,.
The final term, (10c), gives the cross terms nin7T.
Consequently, the scaling cecefficients y,, are com-
posed of transition probabilities P, g, . Similarly
Yo consists of the transition probabilities B, .., , o
Yoo. the ET when n, =n, =0 is a combination of
both these kinds of terms. Thus the scaling coeffi-
cients y,, Or Y, are indicative of the transfer of
energy from a molecular vibrational mode into
translation, namely pure V-T processes.

The vy,,, (with aeither / nor m equal to 0) are
composed of transition probabilities £,y ,,. Recall
that these arise from reexpressing 2, ,, o iin,sm
via the ECS scaling form; hence these v, are
indicative of energy transfer between the modes,
i.e. pure V-V and V-V, T processes.

As in the case with one degree of freedom [16],
the quantum ECS scaling law [24] offers both a
Jjustification for the CST, as well as providing a
simple interpretation of the individual scaling
coefficients. The detailed expressions for the y can
be obtained in 2 manner analogous to that in ref.
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{16]: however, these are substantially more
cumbersome in the.present instance. The domi-
nant contributions to the vartous coefficients can
be identified as

Yo =ZPrn,.o.,1( E, ). (11a)

T

Tﬂmzzpnlm.nto(Ek)' (llb)

",

(The individual transition probabilities usually
have a weak dependence on the elastic quantum
number.) It is not possible to easily distinguish
between the contributions from V-V and V-V.T
processes in the cross terms. v,,. Both

gy z s m and B, . =, contribute to
¥;.,- However, since the former process would be
expected to have an amplitude of the order of

wynaay & ts OF Pasinyna = m OF 1€8S. any substantial
increase of y,,, OVer y,5. Yo, May be interpreted as
indicative of enhanced V-V iransier. (Resonant
V-V transfer becomes possible when one mode
frequency is close to being an integral multiple of
the other. For example, if kw; = k'w,, the magni-
tude of v, , . is then an indication of the importance
of this resonant process.)

The deconvolution of the ¥ to obtain individual
state-to-state transition probabiiities is thus a more
complicated scheme. However, as will be seen in
section 3. the (absolute} numerical values of the
various coefficients. and their dependence on the
kinetic energy, can accurately reflect the hehaviour
of the transition amplitudes themselves.

A measure of the overall inelasticity is the en-
ergy transfer when the molecule is classically at
rest. Jy =J, = 0. This quantity, denoted EZ. which
is given in terms of the scaling coefficienis by

EZ=3(-1/2)""y, (12)

serves 10 characierize the collision system.

3. Application

The general methodoelogy presented in section 2
is applied to a model collision case. In order to
make some comparison with other studies [21,22],

this system nominally * corresponds to the case of
harmonic CO,-rare-gas collisions. The primary
aim is to demonstrate the scope of the scaling
analysis — not only in extending classical compu-
tation, but also in extracting as much of the quan-
tum behaviour as is possible. This is comple-
mented by CQ calculations. In the results de-
scribed here, all calculations employed at least 36
trajectories — 6 per vibrational degree of freedom.
When the moments were extremely small, as in
CO,-Kr coliisions at low energy. the number of
trajectories was increased to 100 to check for
accuracy. Convergence was obtained to 3 signifi-
cant figures for both ET moments and the CQ
transition probabilities.

Among the practical problems in the extraction
of implicit quantum information from classical
trajectory data. a major one lies in the relative
errors introduced by the use of classical mechanics
[25]. For exampie. ET{E,: 00) ofien turns out to
be negative. whereas the quantum-mechanical mo-
ment is necessarily > 0. In this paper the analysis
proceeds via the scaling coefficients wherein a
different problem occurs. The v are determined by
an inversion procedure. eys. (6)—-(8). As the input
information is increased these coefficients con-
verge. For predictive accuracy, however, one can
use unconverged v, if the input states are selected
carefully to span the region of interest (sec espe-
cially tables II and III in ref. {16]). The iargest
terms approach the converged values faster than
the smaller ones; even so, the unconverged coeffi-
cients are usuaily of the same magnitude as the
converged ones. In the present scattering problem,
the number of trajectories needed to generate the
converged coefficients is much greater than that
needed to be able to achieve excellent scaling
predictions for the ET. Thus not much significance
will be attached to the smaller y coefficients except
in a broad and qualitative fashion.

At a given kinetic energy, moments are com-
puted for initial states n,, n, =0, 4, 8, ie. for a
total of nine inmitial states. This suffices in de-

* The system parameters are those used in refs. [21,22], and
thus this is only a crude representation of CQ,-rare-gas
collisions. Since the methodology is of greater interest here,
such a model is more than adequate for the purpose at hand.
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termining, the y coefficients via egs. (6) and (8), up
to and including v,,. The y are then used in eq: (7)
to generate the moments from any other state in
the range 0 < n,, 7, < 8, which maps-out the be-
haviour of the vibrational manifold including 81
possible initial states. Shown in table 2 are the
results of such a procedure for CO,—~He and Kr at
E, =4(=067eV)andintable3at £, =8(=1.34
eV). The principal vy coefficients are given in table
1.

The major observation regarding this harmonic
model system is that a three-term scaling ap-
proximation works extremely well along the
rows /columns of the ET matrix. In applying the
scaling form, we have chosen widely spaced (but
symmetrically placed) initial states to determine
the coeflicients. The difference between the scaling
predictions and exact calculations from separate
trajectory computations are less than 1% for either
collision partner in both tables 2 and 3. (A dif-
ference in the two systems is the pattern of the ET.
At £, =4, energy is transferred into translation in
He collisions for all states n; > 1, n,; with the
heavier rare-gas atom. this occurs only for »,;, low
1, states.) Initial states with higher excitation in
the asymmetric stretch tend to absorb energy into
vibrational modes. At higher E, in table 3 both He
and Kr collisions tend to be deactivating except at
low a; (n; <2 for He and #; =0 for Kr). These
effects can be understood by examining the mo-
ments for the average change in quantum numbers
An, and An,. A detailed analysis of a more realis-
tic model of CO,—Kr collisions has been given

7 earlier by Schatz. and Muﬁpney [26], where such

behaviour has: been -noted and discussed. (Note
that there can be considerable confidence in the
classical calculations: a quantum study of the same
collinear CQ,~Kr system by Clary [27} shows good
agreement between classical and quantum ET mo-
ments at translational energies above 1 eV.)

A glance at table 1 reveals several interesting
features. Firstly, BEZHe /EZXr =~ 15000 at E, =4,
and = 500 at E, = 8; the inelasticity in the colli-
sion is dramatically reduced with the heavier
partner at the same kinetic energy. Secondly, in
either system, [vol> |yl — Le. energy transfer
progresses more easily out of the symmetric stretch
as compared to the asymmetric. The ratio w,y,5/ Yo,
gives an estimate of the ratio of the transition
probabilities for one-quantum de-excitations (sym-
metric versus asymmetric). This ratio is farger for
Kr than for He, i.e. the asymmetry is more pro-
nounced in the former case. Further, this ratio
decreases with increasing kinetic energy, from =
700 at E, =2 10 50 at £, =8 for He. The largest
of the terms that gauge V-V, T transfer, v,,, i1s of
the same order as v;,: this is a direct consequence
of the lack of coupling between the two modes of
the isolated molecule. With increasing kinetic en-
ergy the ratio v,,/7v, decreases; this leads to the
expectation that Pygq,/ Py op Will correspondingly
decrease as well

The above inferences are drawn entirely on the
basis of the scaling analysis given in section 2.2.
This can be contrasted with previous studies of the
same systems-

Table 1
Scaling coefficients @ for CO,—He, Kr. The input informaiticn is from states 5 = 00, 04, 08, 40, 44, 48, 80, 84, 88

E =2 E. =4 E,=8

He He Kr He Kr
Yoo -~0.922(-3)® 0.407(—1) 0.103(—5) 0470 0.619%~3)
Yo —0.10{— 1) —-0.625(-1) —0.850(—5; -0.173 —0.914{—3)
You —0.287(-4) —0.564( -3} 0.198(—5) —~0.699(—2) —0.624(—3)
Yio 0.153(—4) 0.116(—3) ~0.113(—5) 0.263(—3) —0.347—5)
i —0.357(—4) —0234(—3) 0.483(—5) — 0404 —3) 0.382(--3)
Yaq 0.132(—6) 0.112(—5) —0.939(—7) 0.677(—6) —0.187(—6)
EZ 4.111(-3) - T225(—2) 5.233(—4) 5.599¢(—1) 1.079(—3)

2 The coefficients have dimension of energy, which is measured in units of 1351.23 con ™.

1

®} Jp this and all other tables, the digits in parentheses indicate the power of 10 by which the preceeding numbers must be multiplied.
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Scaling in CO,~—rare-gas collisions at £} = 4.0(0.67 eV). The upper and lower figures refer to He and Kr partners; the moments fo
CO, —Kr should be multiplied by a factor of 10~ 2. The unit of energy is the CO, symmetric-stretch normal-mode spacing, - )

n,y ns

0 1 2 3 4 5 6 7 . 8
0 0.0407 0.0402 0.0396 0.0390 0.0385 0.0379 0.0373 0.0368 0.0362
0.0103 0.0304 0.0511 0.0723 009490 0.1163 01392  0.1625 0.1864
1 -0.0217 -00225 -0.0233 —-0.0241 —0.0249 —0.0257 —0.0265 -0.0273 —0.0281
{0.0493) & (—0.027H™ -
—0.0861 —0.0187 0.0490 01169 0.1851 0.2535 0.3222 0.3912 0.4604
2 —0.0839 —0.0849 —0.0860 —~0.0870 —0.0830 —0.0890 —0.0900 —0.0911, ~0.0921
—0,2051 —0.0023 0.0206 0.1334 0.2463 0.3592 0.4721 0.5850 0.6980
3 —0.1459 —0.1471 —0.1484 ~D.1496 -~0.1509 -0.1521 —~0.1533 —0.1546 —0.1559
0.1245) % (—-01s21™ -
—03467 —0.1%04 —00342 01218 0.2776 0.4332 0.5887 0.7440 0.8591
4 —0.2076 —0.2090 —0.2106 —0.2120 ~0.2135 —0.2150 —-02165  .—0.2179 —0.2194
-0.5110  -0.3130 —0.1153 0.0821 0.2791 0.4758 0.6721 0.8631 1.064
5 —-0.2691 —0.2708 —-03725 —0.2742 ~0.2759 —02776 -0.2793 —0.2810 —0.2827
—0.6980  —0.4601  —0.2227 0.0143 0.2507 0.4868 0.7223 0.9574 1.192
6 —03303 —-03323 —03342 —0.3361 —0.3381 —~-0.3400 —0.3419 —0.3438 -0.3457
—-09076 —-0.6318 —0.3565 —0.0817 0.1925 0.4662 0.7393 1.012 1.284
7 —03914  ~—0.3935  —0.3957 —0.3978 —0.3000 ~0.4021 —0.4042 —0.4064 —D.4085

{—0.3878) ¥ (04137) ™

—1.140 ~0.8279 —05165 —0.2057 0.1045 0.4141 0.7231 1.032 1.339
s —~0.4522 —04546  —0.4569 —0.4593 —0.4616 ~0.4640 ~0.4663 —0.4687 —04710
—~1.395 —1.049 —0.7029 —0.3579 —0.0135 0.3304 0.6737 1.016 1.358

®' Exact ET from a separate trajectory calculation for CO,—He: 1o be compared with the upper number (predicted).
" Exact ET for €O —Kr to be compared with lower number.

Table 3
Scaling in CO,—rare-gas collisions at £, = 8.0{1.34 eV). The upper and lower figures refer to He and Kr partners; the moments for
CO, -Kr should be multiplied by a factor of 107 % The unit of energy is the CO, symmetric-stretch normal-mode spacing

7y L3
1 2 3 4 5 & 7 8
¢ 0.4702 0.4632 0.4562 0.4492 0.4422 0.4352 0.4283 04213 0.4143
0.0619 0.0613 0.0507 0.0601 0.0594 0.0588 0.0582 0.0576 0.0569
1 0.2979 0.2904 0.2830 027535 0.2680 0.2605 0.2530 0.2456 0.2831
(02755)2 (—0.0322)»
—0.0298 —0.6302 —0.0305 —0.6309 —0.0312 -0.0316 —0.0320 —0G323 -0.0327
2 0.1262 01182 01102 0.1023 0.0943 0.0863 0.0783 0.0704 0.0624
-0.1222 —0.1223 —0.1224 —0.1226 —0.1227 —0.1228 —01229 —-0.1231 0.1232
3 —0.0450 —0.0535 —0.0620 —0D.0704 —0.0780 -0.0874 —0.0958 —0.1043 ~0.1127
(—-0.2150) ™ (—0.1043)
~0.2153 —0.2152 —0.2151 —0.2150 —0.2150 -0.2149 ~0.2148 -02147 —0.2147
4 —0.2157 —0.2247 —0.2336 —0.2426 —0.2515 —0.2605 —0.2694 —0.2784 —0.2873
—0.3091 -0.3088 —0.3085 —0.3083 —G.3090 —0.3078 —0.3075 ~03073 —0.3071
s —0.3859 —0.3953 —0.4048 —-0.4142 —0.4237 —-0.4331 -0.4425 —04519 —-0.4613
-0.4036 —04031 —-0.4027 —0.4023 —0.4019 —0.4015 —0.40311 —0.4008 —0.4004
6 —0.5555 —0.5655 —0.5754 —0.5853 —0.5952 —0.6052 ~0.6151 —0.6250 —0.6349
—0.4987 -0.4982 —~0.4977 -0.4972 —0.4966 —0.4961 ~—0.4956 —0.4951 —0.494¢6
7 —Q.7247 —~90.7351 —0.7455 —0.755% —~0.7663 -0.7767 —0.7871 —0.7975 - —0.8078
(—0.5916)® (—0.7975)
—0.5%46 ~0.5940 —0.5934 —0.5928 -0.5921 —0.5916 —0.5910 —0.5%04 —90.5898
8 —0.8932 -~ 0.5041 —~0.9150 ~09259 —0.9368 —0.9477 —0.9586. —0.5694 —0.9803
—06912 ~0.6905 —0.6898 —0.6891 --0.6886 —-0.6878 = 06872 —0.6865 —0.6859 -

* Exact ET from separate trajectory calcuiation for CO,-He: 1o be compared with the upper number (predicted).
® Exact ET for CO,—Kr 10 be compared with the lower number.



Earlier quantal studies [21, 22] ‘of harmomc CO,-
and He, Kr collisions have been carried. out at

fixed rotal energies of 1 eV and 1.5 eV, on collinear
systems closely related to the present ha:mltoman

(1). These results are summanzed “for convenicence

in table 4. The present classical calculations are at
a fixed kinetic energy, and the scaling coefficients
relate only de-excitation transition probabilities at
the same kinetic energy. Nevertheless some com-
parison is possible.

The effect of increased mass of the colliding
particle in decreasing the overall ET is well known,
and has been observed earlier [21,22]. The parame-
ter EZ serves to quantify this fact here. From table
4, it can be seen that PS5, /PR, at Ey=1 eV is
around 15000, and decreases to 600 at E4.—=1.5
€V, in a manner similar to the ratio y/i*/vX" (7000
at £, =4 to 200 at E_=28). The one-quantum
transition ratio, P,yq0/ Py 00 also behaves in the
same way (=900 at E;=1¢eVto 150 at E;=15
eV). As expected, ( P00/ Poroo)* is much larger

Table 4
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‘at the same energy. Fmally, one may -observe that
‘the ratio P,g; 017/ Poi ho decreases with increasing total

energy, as anticipated from the scalmg analysis. -

Although we:-have compared transition proba-
bilitics at different energies, the conclusions would
be similar if it were posmb]c to make the compari-
son at the same kinetic energy, since the individual
transition probabilities are well separated (see fig.
1 in ref: [21]). The very ease of generating the
classical moments and performing the scaling
analysis makes is possible to treat systems of a size
considerably beyond the scope of any quantum
calculation.

At this stage therefore, it is appropriate to
present some.results from the application of the
CQ method. An indication of the relative accuracy
in using CQ is obtained by comparing the classical
ET moments with those obtained by using the CQ
transition probabilities. Although the ratios
ET(CQ)/ET(classical) and ET?(CQ)/ET(classi-

cal) can vary considerably, when n, or n, is large,

Quantum-mechanical transition probabilities, £, .. i, for the CO, —He and Kr systems. Unless otherwise indicated, these values are
taken from ref. [21]. The upper and lower numbers refer to energies 1 and 1.5 eV respectively. The upper right triangle pertains the

CO; —He collisions, and the lower left 10 CO,—Kr

a)

Kinetic energy ®

n, n, Erl.nl
Er=1eV Er=15¢V
0 0 1.387 4.58 7.57
1 0 2.387 3.58 6.57
0 1 3.610 2.80 5.79
2 0 3.386 2.58 5.56
any ayn%
/1) 10 01 20
oo - 0.74(—~1) 0.82(—4) 0.10{-2)
- 0.30 0.20(—2) a
10 0.45(—5) - 0.20(—3) 05—
0.46(—3) - 0.12(—2) 4
01 < 0.16(—6) - 011{—4)
9 0.18(—4) - 0.37(—3)
20 ) 0.5(—6) @ 0.29(~ 5) -
» @ 0.18(—4) -

® The energy of the state 2,2, in units of the symmetric stretch normal-mode spacing.

® Kinetic energy in the stale n,n, (in the present units).
©) Transition probability given in ref. {22].
4 Transition probability not available in ref. [21].

= Transition probability not available in either refs. [21] or [22].
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Table 5
Comparison of exact and CQ transition probabilities P, ,_ ,:,; for CO,—~He collisions
nnLnyns Ep=1eV Eq=15eV

oM™ CQE" cQD e QMY QM CQE"™ cQp“ QM
0010 074 1) 0.16 0.16 0.11 0.30 0.56 034 034
00 01 0.82(—4) 0.50({—3) 024(—3) 0.21(—3) 0.20(—2) 0.22(—2) 0.29(—2) 0.29—(2)
1001 020(—3) 0.78(—4) 0.51{—5) 027(—2) 0.12(—2) 0.13(—2) 0.19%(-2) 0.72(—-2)
1020 051(—1) 0.12 0.89(—1) 0.89(—1) 0.33 0.31 0.38 0.36
0120 011 -4 01K ~5) 0.44(—5) 0.91(—3) 0.37(—3) 6.12(—3) 0.11(—3) 048(—2)

2 Quantum results from refs. [21,22].

B CQ excitation results. i.e. for the process nyn> — nini.

<) CQ de-excitation results. i.e. for the process myns — 2 ns.
9 Quantum results from ref. [23].

and the kinetic energy is high, the ratio is close to
1 for both the first and second moment of the
energy transfer. For example. in CO,~Heat £, = 8.
for n,n,=80. these are (—0.8932)/(—0.7693) =
0.86. and 9.53,/10.12 = 1.06 respectively. One can
then have reasonable confidence in the actual
numerical values of the CQ results. and more
importantly, in the physics ol the situation as
displayed in the propensities and relative magni-
tudes for the differen: transitions. Since we have
used only 36 trajectories in these calculations. the
quasiclassical histogram method would be quanti-
tatively inadequate here.

In table 5. transition probabilities from quan-
tum calculations and the present CQ are compared
at fixed total energy. The essential features of the
two collision cases seem to be reproduced quite
well. At the higher total energy this agreement
improves. Also shown are quantum transition
probabilities in a similar system (with a different
anharmonic molecular potential at the same en-
ergies. Except for the process 1001 which is poorly
described, the CQ resulis are surprisingly good if
one allows for the naivety of the method itself and
the fact that it involves marginal additional effort
to obtain the ET moments.

There are several ways in which the CQ results
could be “improved”. When both first and second
CQ moments show approximately the same devia-
tion from the classical ET moments, one could use
this as a constant muitipiicative factor 1o change
the transition probabilities, although assuming
equal relative errors for all processes is questiona-

ble. A better method at low kinetic energies is to
use the quantum ECS law [24] on a transition
amplitude known to be more accurate. For exam-
ple, Py .o (E, =4)=0.382, which gives P,q,q (Fy
=4)=0.96(—1) at £;=1.08 eV, which is closer
to the accurate quantum result {see table 4).

4. Discussion

In using classical mechanics in studying molec-
ular collisions. often one can most reliably com-
pute initial state selected quantities. Typically these
are moments of dynamical variables that change
during the coliision, but are constants of the mo-
tion asymptotically as 1 > *oc. Formally. such a
problem is solved by the classical technique of
varation of constants, and this leads in a straight-
forward way to the classical scaling theory [14].
For asymptotically separable or integrable sys-
tems, eq. (7) and its generalization to more degrees
of freedom holds. For non-integrable systems, the
CST is valid only in a restricted regime for regular
levels [19}.

In the example discussed, the CST is seen to
hold to a high degree of accuracy. It suffices to
compute the energy transfer from 9 states to pre-
dict that from at least 81 (if not more) other levels
in the vibrational manifold. As the number of
internal degrees of freedom increases, the CST
grows in utility, not only as a predictive tool, but
also as a means of compacting large amounts of
data.
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This similarity with the quantum ECS law is
worth emphasizing. In a previous collision case
{16] as well as the present one, simple classical—
quantum correspondences led to an expression of
the classical scaling coefficients in terms of quan-
tum state-to-state transition amplitudes. This is a
major advantage of the CST: when the number of
actual trajectories is insufficient to employ even
the quasiclassical histogram method, the scaling
analysis can be applied. The information that can
be derived from these coefficients is in agreement
with the results of separate quantum-mechanical
treatments of the same collision cases. However,
since examination of scaling coefficients reveals
that they consist of complicated combinations of
various transition probabilities, this kind of infor-
mation is at best qualitative. (It is also likely that
in most “large” collision systems, such informa-
tion is adequate and comparable to that obtained
by approximate dynamical theories [28].) For
model CO,—He and Kr collisions, it has been
possible to show that the trends apparent in the
classical scaling coefficients are an accurate reflec-
tion of the true quantal behaviour [21,22].

As a wseful addition to the largely inferential
data obtained through the scaling analysis, the
method of continuous quantization was also ap-
plied to obtain transition probabilities indepen-
dently. This was seen to augment the utility of the
purely classical analysis; however, the CQ method
itself gives no indication of the overall quality of
the classical calculations. Where comparison with
exact gquantum-mechanical results was possible,
the CQ results were seen to be in reasonable
agreement. (A weakness of the CQ method, how-
ever, is that it may not be amenable to the Monte
Carlo sampling of the initial phase which is
customary in larger systems.)

There are two other methods [6—8] of extracting
quantum information from classical moments. One
[6.7] uses an information-theoretic constraint of
maximum entropy to invert moments of the en-
ergy transfer 1o obtain quantum transition proba-
bilities. The other [8,29], employs cross-correlation
moments and is similar in some respects to and
complementary to the scaling analysis in section
2.2. The cross-correlation moments, M,; =
{AcjAed), where Ae, is the change in energy in the

kth oscillator,.and { ) denotes the phase average
(as in eq. (4)), from low initial states can.be
directly expressed in terms of quantum transition
probabilities [29]. This latter method works rea-
sonably well, although sometimes the inversion
procedure can yield unphysical results (such as
negative transition probabilities) due to the errors
introduced by the use of classical mechanics. The
advantage of the scaling analysis in this context is
that the classical calculations can be performed in
the regime where classical mechanics is most likely
to be accurate — e.g. for high quantum numbers,
since the analysis only requires the coefficients y.
On the other hand, the scaling analysis can be
more complicated in some cases. A necessary in-
gredient in the scaling analysis is the gquantum
ECS theory [24]; for anharmonic oscillator sys-
tems, the ECS expressions are often cumbersome,
and the quantum-number dependence is not trans-
parent. In such a situation, the cross-correlation
method has an advaniage. A more detailed com-
parative study of the various moment analysis
methods is presently under way [30].

The extension to more degrees of freedom does
not pose any additional problem, unless there is
widespread intramolecular chaos. It should be em-
phasized that although the example chosen here is
simple, both the methods, classical scaling and
continuous quantization are valid for more com-
plicated cases since they only require that action-
like variables be defined. This approach can there-
fore prove useful in the accurate (e.e. a more
realistic intermolecular potential, a proper
anharmonic description of the molecular system)
modeling of systems of chemical interest.
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