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A method of  analysing classical trajecto/'y data ,  based  on  recently derived scaling principles, is appl ied to a model 
a t o m - t r i a t o m  coll inear collision system. Apa r t  f rom the utility of  the scaling idea in extending trajectory computa t ions ,  the 
analysis of  the scaling coefficients in terms of  t ransi t ion probabil i t ies  increases the scope of  the classical scaling theory as a 
means of  obta in ing  (at  the very least) quali tat ive quantum-mechanica l  informat ion  from classical trajectories. As a n  useful 
adjunct ,  the method  of  cont inuous  quant iza t ion  is applied to generat  e approximate  t ransi t ion probabil i t ies .  These results are 
semiquanti ta t ive;  thus a combina t ion  of  classical scaling and  cont inuous  quant iza t ion  affords a powerful  means  of  modeling 
complex collision cases with a m i n i m u m  of  computa t iona l  effort.  

1. Introduction 

A central problem in studying molecular colli- 
sion systems is the difficulty associated with apply- 
ing exact or  accurate theoretical methods [1,2]. 
Even for molecules containing relatively few atoms, 
it is cus tomary to use classical mechanics - most  
commonly  the simple and well-known quasiclassi- 
cal histogram technique (QH)  [3]. (A number  of  
alternate scattering methods  based on classical 
mechanics have been suggested in recent years 
[4-12], some of  which involve modifications in 
order  to improx, e the QH.)  The simplicity and 
convenience of  a trajectory method is an-attractive 
feature insofar as application to systems with 
several degrees of  f reedom is o f  concern. Since it is 
desirable to obtain as much quantum-mechanlcal  
information as is possible from such classical 
calculations, it is of  interest to explore different 
means of  analysing classical trajectory data. The 
pr imary aim of  this paper  is to demons t r a t e  the 
utility of  two recently proposed  theories in facili- 
tating such analysis, wi th  application to a model  
a t o m - t r i a t om system. 

We  focus on the first moment  of  /_he energy 
transfer (ET) in inelastic collisions,  and demon-  
strate the appl icabi l i ty0f  a classical scaling princi- 
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pie [13,14]. This relationship holds over a wide 
range of  collision condit ions and makes possible 
the predict ion of  the energy transfer from a large 
number  of  states based on  a small set o f  trajectory 
calculations [13,15,16]. One  can thus treat a v e r y  
large number  of  states - certainly more  than can 
be  handled by  almost any quantum scattering 
method.  Within the assumption that classical and 
quan tum averages are equal, the classical scaling 
coefficients can be  interpreted [16] in terms of  
q u a n t u m  state-to-state transition probabilit ies,  
which are the pr /mary quantities of  interest. 

Alternately, state-to-state transition probabil i-  
ties are obtained here b y  the cont inuous quantiza- 
tion (CQ) procedure  [12] *. This method utiliTes a 
somewhat  elementary mapping concept  to analyse 
the classical con t inuous  act ion variable. In cases 
treated earlier [12], reasonable accuracy w a s  ob-  
tained for most  ampli tudes that were not  too 
small, i.e. > 10-3.  However,  when classical mecha-  
nics is grossly incorrect, CQ offers only marginal 

'~ The  CQ method  has  been criticized for no t  reducing to the 
per turba t ion  result  for  all t ransi t ion ampl i tudes  by  Dickin-  
son and  R/chards  [17]. However,  the C Q  method  does in  fact  
reduce to the  correct  classical result, as well as the  correct  
perturbation limit for one-quantum transitions [I8]. 
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improvement over QH. There is one advantage 
even in the case when classical mechanics fails 
badly - as for example in extremely adiabatic 
situations. C Q  gives good estimates of  the relative 
naagnitudes for the transition amplitudes, and cor- 
rectly predicts propensities and trends. In the pre- 
sent cases ~', wherever comparison with exact 
quantum-mechanical  results has been possible, this 
is seen to be true. The number of trajectories 
needed for CQ is comparable to that needed to 
obtain moments,  and in addition, the transition 
probabilities so obtained contain the essential fea- 
tures of  the physics of the situation. 

Although here the variation of the ET with 
initial state of  the molecular system is studied via 
the classical scaling theory (CST), a variety of 
scaling laws for any dynamical  variable can be 
derived [13.14]. Recall that  the scaling and CQ can 
be applied (i) at every value of the impact parame- 
ter, (ii) for arbitrary forms of  the interaction 
potential, and (iii) for harmonic as well as 
anharmonic  systems. (An important case when 
both methods break down is in the case of non-in- 
tegrable systems [19] when the motion is chaotic, 
since then proper final action variables cannot  
always be defined [20]. The model system to which 
these theories are applied is therefore chosen to be 
as simple as possible, in order to leave the analysis 
most transparent; none of these simplifications are 
restrictive in any essential way. Thus the collision 
geometry is collinear, and the molecular hamilto- 
nian is asymptotically integrable (and separable). 
This is described in section 2. 

Such systems have been studied before [20-22] 
by different methods; these previous studies serve 
as a benchmark against which the present analysis 
is compared, in section 3. The information derived 
from the CST is inferential and largely qualitative, 
but  accurate; that obtained from the CQ is semi- 
quantitative. Thus in larger, more complex colli- 
sion cases, wherein the application of  most dy- 
namical methods (including the QH) remains un- 
feasible, a combination of CST and CQ can prove 
practicable. A discussion and summary follows in 
section 4. 

~' A straightforward generalization to two degrees of  freedom 
of  the CQ procedure as given in t e l  [12] is used here. 

2. Theory  

2.1. Collinear model  

The classical model  system of  a symmetric tri- 
atomic molecule(XYX)-atom(Z) can conveniently 
be described in mass-scaled normal  coordinates. 
The hamiltonian is given by 

g ( p .  q) = ½ + (q? + kq )/2 + V(q), (1) 
i 

where the interaction potential has the form 

V(q) = e x p [ -  a(q3 -- ql -- q2)] (2) 

and the reduced masses are given by 

t~2 = k ' / Z  = ( 2 , n ,  + m 2 ) / m  2 = .,~. 

tt3 = ,n3(2rn  , + m 2 ) 1 2 m l ( 2 m  , + m 2 + m3);  (3) 

= ( 1 / 2 L Z m ~ k l )  I/z. m I. rn 2 and rn 3 are the masses 
of  atoms X, Y and Z, k~ is the force constant  for 
the symmetric stretch; in obtaining (1), the in- 
tramolecular potential used consists of  two uncou- 
pled harmonic oscillator functions, one per XY 
bond. All energies are measured in units of  the 
symmetric stretch spacing. As usual, the p and q 
indicate momenta  and coordinates, the subscripts 
1-3  denote, respectively, the symmetric and asym- 
metric stretch normal modes, and translation coor- 
dinates; L is the range parameter for the interac- 
tion potential. 

The usual procedure [3] is followed; the hamil- 
tonian (1) is transformed to act ion-angle  variables 
for the molecular degrees of freedom, (P2q~P2q2) 

( J lOiJ2~) .  A given initial state is chosen by the 
correspondence n~ = J / +  1 / 2  (h  = 1); phases 02 
and 02 are sampled uniformly in [0, 2~r]; trajecto- 
ries are integrated in cartesian space and trans- 
formed to final action variables at the end of 
collision. Moments  of  a dynamical  variable W are 
computed through the integral 

1 2-= 2-= t aw(G;s2,J2)= .2 [ dO2[ 
( 2 ~ )  "o -'o 

l----- 1, 2 . . . .  (4) 

Note  that AW is indexed by the kinetic energy and 
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the initial actions. In eq. (4), the subscripts i and f 
denote  initial and Fmal  values.-We will primarily 
be  concerned with the first moment  of  the energy 
transfer, A W =  ET, for which W is the molecular  
hamihonian.  

-! 

sion for the-ET 

E T ( E k ; n , , n 2 ) =  -- E [ n ~ - n ' z - + x 2 ( n 2 - n ; ) ]  

× e.1.. _..;.~_( Ek ). (91 

2.2. Classical scalingtheory (CST) 

The basic classical scaling formalism has been 
presented in detail elsewhere [13,14] and we quote  
only the pert inent  results here. I f  either one of  the 
initial actions is fixed, at a given kinetic energy, 
the variation of  AW with the other  action is ex- 
pressed as a polynomial  series [16], 

a W (  ek ;  Z 4 )  = E / ~ = ( J ) s ~  (5) 
m 

(here Jl  is fixed at J ) ,  which can be  written in a 
quan tum number  form as well (n = J -  1 /2) :  

Aw(E~; ~, n_.) = Z - ~ ( ~ ) n ; ' -  (6) 

Note  that the a depend on ~. A similar expression 
holds for the situation when n 2 is fixed and n z is 
varied. Combining these, it is straightforward to 
obtain  

aw(E~;  n , ,  ,~ )  = E r ,  jnlng. (7) 
i , j  

This is the main scaling form which will be  used 
later• The various am(nL), i.e. the scaling coeffi- 
cients for individual rows of  the A W  matrix are 
related to the y b y  the t ransformation 

I 2 m 
a , ( n l ~ )  = n,~ n,._ . • .  n,._ ~ ,  

• o . . .  " • 

. . .  , ~ t V m , /  .,(,,,.)1 . , .  , .  
(8) 

A detailed examination of  the CST in the pres- 
ent  collision case closely follows the analysis given 
earlier in the case of  a t o m - d i a t o m  collisions [16]. 
Consider  the exact quantum-mechanical  expres- 

This can be  separated into three terms, corre. 
sponding to whether  the process Piy.kl is "elm~tic" 
in the symmetric stretch, asymmetric stretch, o~ 
neither, i.e. 

E T ( E k ;  hi ,  n2) = E vPn,...,,t-r... (lOal 
St 

+ E(,.,~,,)v~,.. .... .__. (1063 
p 

+ E (", +.'~,'~)P.,....,-~,..-. 
i'117 2 

(10c3 

By applying the quan tum energy corrected sudden 
(ECS) scaling theory [24], it is easy to see that the 
first term, (10a) reduces to the form 

--nlP1n..onz- nl(  n 1 -- 1)/'2,,_..0,_ " + . . . .  

which includes only powers of n2; likewise, the 
second term (10b) contributes only powers of n 2. 

! m The final term, (10c), gives the cross terms nln 2 . 
Consequently, the scaling coefficients Yt0 arc com- 
posed of transition probabilities Pt,,~.O,,a" Similarly 
Yo,. consists of the transition probabilities P,,,,,,.,,,o- 
Yo0, the ET when n I = n 2 = 0 is a combination of 
both these kinds of terms. Thus the scaling coeffi- 
cients Y10 or YOre are indicative of the transfer of 
energy from a molecular vibrational mode into 
translation, namely pure V - T  processes• 

The Yl,,, (with neither l nor  m equal to O) are 
composed  of  transition probabilit ies Pro.0,,,- Recall  
that these arise f rom reexpressing P,,,,,2.,,i -+ t,,.__+,,, 
via the ECS scaling form; hence these Yt,,, are 
indicative of  energy transfer between the modes,  
i.e. pure V - V  and IF-V, T processes. 

As in the case with one degree of  f reedom [16], 
the quantum ECS scaling law [24] offers bo th  a 
just if ication for the CST, as well as providing a 
simple interpretation o f  the individual scaling 
coefficients. The detailed expressions for the y can 
be  obta ined in a manner  analogous to that in ref. 
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[16]: however ,  these  a re  s u b s t a n t i a l l y  m o r e  
c u m b e r s o m e  in t h e . p r e s e n t  ins tance .  T h e  d o m i -  
n a n t  c o n t r i b u t i o n s  to the  va r ious  coef f ic ien ts  c a n  
be  ident i f ied  as 

Yto = '~--~- Pt. ._.0n:(Ek). ( l l a )  
rZ 2 

v0,,, = E p . ,  ... .  ( l l b )  
n I 

( T h e  individual  t rans i t ion  p robab i l i t i e s  usual ly  
h a v e  a weak  d e p e n d e n c e  on  the  elast ic q u a n t u m  
n u m b e r . )  I t  is no t  poss ib le  to easi ly  d is t inguish  
b e t w e e n  the con t r i bu t i ons  f r o m  V - V  a n d  V - V , T  
p r o c e s s e s  in t he  c r o s s  t e r m s .  YI.,. B o t h  
P~ . . . .  _.. z t  . . . . . .  _-  a n d  Pn . . . .  _.. _,- t,,. ., c o n t r i b u t e  to 
YI,,,- Howeve r .  s ince the f o r m e r  p rocess  wou ld  be  
expec t ed  to have  an  a m p l i t u d e  o f  the  o r d e r  o f  
P,,,,,._..,+t.._ o r  Pn,,,2.,,, . . . . .  . -  o r  less. any_ subs t an t i a l  
inc rease  o f  Yt,,, ove r  "h0. Y0,,, m a y  be  i n t e rp re t ed  as 
ind ica t ive  o f  e n h a n c e d  V - V  t ransfer .  ( R e s o n a n t  
V - V  t r ans fe r  b e c o m e s  poss ib le  when  one  m o d e  
f r equency  is c lose to be ing  an  in tegra l  mul t ip le  o f  
the  other .  F o r  example ,  if  kcot = k ' ~ ,  the m a g n i -  
t ude  o f  y ~ .  is then an  ind ica t ion  o f  the i m p o r t a n c e  
o f  this r e sonan t  process . )  

T h e  d e c o n v o l u t i o n  o f  the y to ob t a i n  ind iv idua l  
s t a t e - to - s t a t e  t rans i t ion  p robab i l i t i e s  is thus a m o r e  
c o m p l i c a t e d  scheme.  Howeve r ,  as will be  seen  in 
sec t ion  3. the (abso lu te )  numer i ca l  values  o f  the 
va r ious  coeff ic ients ,  a n d  their  d e p e n d e n c e  o n  the 
k inet ic  energy,  can  accura te ly  ref lect  the  b e h a v i o u r  
o f  the  t rans i t ion  a m p l i t u d e s  themselves .  

A m e a s u r e  o f  the overa l l  inelas t ic i ty  is the en-  
e rgy  t rans fe r  w h e n  the molecu le  is c lassical ly at  
rest.  J l  = J_~ = 0. Th i s  quan t i ty ,  d e n o t e d  EZ.  which  
is g iven  in t e rms  o f  the scal ing coeff ic ients  b y  

1 v ' + / y  EZ = E ( - -  / - )  ,j (12) 
t . ]  

serves  to cha rac te r i ze  the col l is ion sys tem.  

3.  Appl i ca t ion  

T h e  genera l  m e t h o d o l o g y  p re sen ted  in sec t ion  2 
is app l i ed  to a m o d e l  coll is ion case. In  o r d e r  to 
m a k e  s o m e  c o m p a r i s o n  wi th  o the r  s tudies  [21,22], 

this  s y s t e m  n o m i n a l l y  * c o r r e s p o n d s  to the  case  o f  
h a r m o n i c  C O 2 - r a r e - g a s  coll is ions.  T h e  p r i m a r y  
a i m  is to  d e m o n s t r a t e  the  s c o p e  o f  the  sca l ing  
ana lys i s  - no t  o n l y  in e x t e n d i n g  classical  c o m p u -  
ta t ion ,  bu t  also in ex t rac t ing  as m u c h  o f  the  q u a n -  
t u m  b e h a v i o u r  as  is poss ib le .  Th i s  is c o m p l e -  
m e n t e d  b y  C Q  calcula t ions .  I n  the  resul ts  de-  
sc r ibed  here,  all  ca lcu la t ions  e m p l o y e d  a t  least  36 
t ra jec tor ies  - 6 p e r  v ib r a t i ona l  deg ree  o f  f r eedom.  
W h e n  the m o m e n t s  were  e x t r e m e l y  smal l ,  as  in 
C O z - K r  col l is ions  a t  low energy ,  the  n u m b e r  o f  
t ra jec tor ies  was  increased  to 100 to  check  for  
accuracy .  C o n v e r g e n c e  was  o b t a i n e d  to  3 signifi-  
c a n t  f igures  for  b o t h  E T  m o m e n t s  a n d  the  C Q  
t rans i t ion  probabi l i t i e s .  

A m o n g  the  p rac t i ca l  p r o b l e m s  in the  ex t r ac t i on  
o f  impl ic i t  q u a n t u m  i n f o r m a t i o n  f r o m  classical  
t r a j ec to ry  da ta .  a m a j o r  o n e  lies in the  re la t ive  
e r ro r s  i n t roduced  by  the  use  o f  classical  m e c h a n i c s  
[25]. F o r  example .  E T ( E k :  00) o f t en  tu rns  ou t  to 
be  negat ive ,  whereas  the q u a n t u m - m e c h a n i c a l  m o -  
m e n t  is necessar i ly  /> 0. In  this p a p e r  the  ana lys i s  
p roceeds  via the  scal ing coef f ic ien ts  where in  a 
d i f f e ren t  p r o b l e m  occurs .  T h e  y a re  d e t e r m i n e d  by  
an  invers ion  p rocedure ,  eqs.  (6 ) - (8 ) .  As  the  inpu t  
i n f o r m a t i o n  is inc reased  these coef f ic ien ts  con-  
verge.  F o r  p red ic t ive  accuracy ,  however ,  o n e  can  
use  unconverged  y,  if  the  inpu t  s ta tes  a re  se lec ted  
ca re fu l ly  to span  the region o f  interest  (see espe-  
c ia l ly  tab les  I I  a n d  I I I  in ref. [16]). T h e  largest  
t e rms  a p p r o a c h  the  c o n v e r g e d  values  fas te r  t h a n  
the  smal le r  ones;  even  so, the u n c o n v e r g e d  coeff i -  
c ients  a re  usual ly  o f  the  s a m e  m a g n i t u d e  as the 
c o n v e r g e d  ones.  In  the p re sen t  sca t t e r ing  p r o b l e m ,  
the  n u m b e r  o f  t ra jec tor ies  needed  to  gene ra t e  the  
c o n v e r g e d  coef f ic ien ts  is m u c h  g rea t e r  t h a n  tha t  
n e e d e d  to b e  ab le  to  ach ieve  excel lent  sca l ing  
p red i c t i ons  for  the  ET. T h u s  no t  m u c h  s igni f icance  
will be  a t t a ched  to the smal le r  y coef f ic ien ts  excep t  
in a b r o a d  a n d  qua l i t a t ive  fashion .  

A t  a g iven  kinet ic  energy ,  m o m e n t s  a re  c o m -  
p u t e d  for  init ial  s ta tes  n l, n 2 --~ 0, 4, 8, i.e. for  a 
to ta l  o f  n ine  ini t ial  s tates .  T h i s  suff ices  in de-  

* The system parameters are those used in refs. [21,22], and 
thus this is only a etude representation of CO+-rare-gas 
collisions. Since the methodology is of greater interest here, 
such a model is more than adequate for the purpose at hand. 
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termining the y coefficients via eqs. (6) and (8), up 
to and  including ~,~. The y are thenused  in eq: (7) 
to generate the moments  from any other  state in 
the range 0 ..~ n~, n 2 ~< 8, wh ich  maps-out  the be- 
haviour of  the vibrational manifold including 81 
possible initial states. Shown in table 2 are the 
results of  such a procedure  for C O 2 - H e  and Kr  at 
E k = 4(-----  0.67 eV) and in table 3 at E k = 8 (=-- 1.34 
eV). The principal y coefficients are given in table 
1. 

The major observation regarding this harmonic 
model  system is that a three-term scaling ap- 
proximation works extremely well along the 
ro ws / co lumns  of  the ET matrix. In applying the 
scaling form, we have chosen widely spaced (but  
symmetrically placed) initial states to determine 
the coefficients. The  difference between the scaling 
predictions and exact calculations from separate 
trajectory computat ions  are less than 1% for either 
collision partner in both  tables 2 and 3. (A dif- 
ference in the two systems is the pattern of  the ET. 
At  E k = 4 ,  energy is transferred into translation in 
He  collisions for all states n~ >~ 1, n2; with the 
heavier rare-gas atom, this occurs only for n~, low 
n 2 states.) Initial states with higher excitation in 
the asymmetric stretch tend to absorb energy into 
vibrational modes. At  higher Ek in table 3 both He  
and Kr  collisions tend to be  deactivating except at 
low n z (n 1 ~ 2  for He  and n l - - 0  for K 0.  These 
effects can be unders tood by examining the mo- 
ments for the average change in quantum numbers  
An~ and An, .  A detailed analysis of  a more  realis- 
tic model  of  COz-K-r collisions has been given 

ear ! ie r  b y  Scha tz  and MuUoney [26], where such 
behaviour  has -been  :noted and discussed. (Note  
t h a t  there can  be  considerable confidence i n  the 
classical calculations: a quantum s tudy of  the same 
collinear C O 2 - K r  system by Clary [27] shows good 
agreement between classical and quantum El" mo- 
ments  at translational energies above 1 eV.) 

A glance at table 1 reveals several interesting 
features. Firstly, F_.ZHe/EZKr----15000 at E k = 4 ,  
and = 500 at E k = 8; the inelasticity in the colli- 
sion is dramatically reduced with the heavier 
partner  at the same kinetic energy. Secondly, in 
either system, {yl0l> ['toll - i.e. energy transfer 
progresses more easily out  of  the symmetric stretch 
as compared to the asymmetric.  The ratio to2't~0/Y0~ 
gives an estimate of  the ratio of  the transition 
probabili t ies for one-quantum de-excitations (sym- 
metric versus as2nnmetric). This ratio is larger for 
Kr  than for He, i.e. the asymmetry  is more pro- 
nounced in the former case. Further,  this ratio 
decreases with increasing kinetic energy, from 
700 a t  E k ~-- 2 t o  5 0  at E k ---~ 8 for  He. The largest 
o f  the terms that gauge V-V,T transfer, y~ ,  is of  
the same order as Ym: this is a direct consequence 
o f  the lack of  coupling between the two modes  of  
the isolated molecule. With increasing kinetic en- 
ergy the ratio Yn/.to~ decreases; this leads to the 
expectation that P~o.o~/PoLoo wiU correspondingly 
decrease as well. 

The above inferences are drawn entirely on the 
basis o f  the scaling analysis given in section 2.2. 
This can be  contrasted with previous studies of  the 
same systems. 

T a b l e  1 
S c a l i n g  c o e f f i c i e n t s  a) f o r  C O z - H e ,  Kx.  T h e  i n p u t  i n f o r m a t i o n  is  f r o m  s t a t e s  nln  2 ~ 00, 04 ,  08 ,  40 ,  44 ,  48 ,  80 ,  84 ,  88  

E k = 2 E k = 4 E L = 8 

H e  H e  K r  H e  K r  

Y00 - -  0 .922 (  --  3)  b) 0 .407 (  --  1) 0 . 1 0 3 (  --  5)  0 . 4 7 0  0 . 6 1 9 (  --  3)  

Y~o - 0 . 1 0 0 (  - -  1) - 0 .625 (  - -  1)  - 0 .850 (  - 5)  - -  0 . 1 7 3  - -  0 .914 (  - 3)  

"tot - -  0 . 2 8 7 ( - 4 )  - -  0 . 5 6 4 (  - -  3)  0 . 1 9 8 (  --  5)  --  0 . 6 9 9 (  --  2)  --  0 . 6 2 4 (  --  5)  

Y2o 0 .153(  - -  4 )  0 .116 (  - -  3)  - -  0 . 1 1 3 (  --  5 )  0 . 2 6 3 (  - -  3)  --  0 . 3 4 7 (  - -  5)  

Ys ~ --  0 . 3 5 7 (  - -  4)  - -  0 .234 (  --  3)  0 . 4 8 3 (  - -  5)  --  0 .494 (  --  3)  0 .282 (  - -  5)  

Y21 0 . 1 3 2 (  - -  6)  0 . 1 1 2 (  - -  5)  - -  0 . 9 3 9 (  --  7)  0 . 6 7 7 (  - -  6)  - -  0 . 1 4 7 (  --  6 )  

E Z  4 . 1 1 1 (  --  3)  7 .225 (  - -  2)  5 .233 (  - -  4)  5 .599 (  - -  1)  1 .079 (  --  3)  

a) T h e  c o e f f i c i e n t s  h a v e  d i m e n s i o n  o f  e n e r g y ,  w h i c h  is m e a s u r e d  i n  u n i t s  o f  1 3 5 1 .2 3  c m - I .  

b) I n  th i s  a n d  a l l  o t h e r  t a b l e s ,  t h e  d i g i t s  i n  p a r e n t h e s e s  i n d i c a t e  t h e  p o w e r  o f  10 b y  w h i c h  t h e  p r e c e e d i n g  n u m b e r s  m u s t  b e  m u l t i p l i e d .  



T a b l e  2 

S e a l i n g  in  C O  2 - r a r e - g a s  co l l i s i ons  a t  E k = 4 .0 (0 .67  eV) .  T h e  u p p e r  a n d  l o w e r  f i g u r e s  r e f e r  t o  H e  a n d  K r  p a r t n e r s ; -  t h e  m o m e n t s  f o  

C O z - K r  s h o u l d  b e  m u l t i p l i e d  b y  a f a c t o r  o f  10  - 4 .  T h e  u n i t  o f  e n e r g y  is t h e  C O  2 s y m m e t r i e - s t r e t c  h n o r m a I - m o d e  s p a c i n g  - - 

n I /'l 2 

0 1 2 3 4 5 6 7 8 

0 0 . 0 4 0 7  0 . 0 4 0 2  0 . 0 3 9 6  0 . 0 3 9 0  0 . 0 3 8 5  0 . 0 3 7 9  0 . 0 3 7 3  0 . 0 3 6 8  0 . 0 3 6 2  

0 . 0 1 0 3  0 . 0 3 0 4  0 .0511  0 . 0 7 2 3  0 . 0 9 4 0  0 . 1 1 6 3  0 . 1 3 9 2  0 . 1 6 2 5  0 . 1 8 6 4  

1 -- 0 . 0 2 1 7  - -  0 . 0 2 2 5  -- 0 .0233  --  0 .0241  -- 0 . 0 2 4 9  --  0 . 0 2 5 7  - -  0 . 0 2 6 5  --  0 . 0 2 7 3  - -  0 .0281  

(0 .0493 )  b) ( - -  0 . 0 2 7 3 )  a) 

- - 0 . 0 8 6 1  - - 0 . 0 1 8 7  0 . 0 4 9 0  0 . 1 1 6 9  0 .1851  0 . 2 5 3 5  0 . 3 2 2 2  0 . 3 9 1 2  0 . 4 6 0 4  

2 - -  0 . 0 8 3 9  --  0 . 0 8 4 9  --  0 . 0 8 6 0  --  0 . 0 8 7 0  --  0 . 0 8 8 0  - -  0 . 0 8 9 0  --  0 . 0 9 0 0  --  0 . 0 9 1 1  - -  0 . 0 9 2 1  

- - 0 . 2 0 5 1  --  0.092.~ 0 . 0 2 0 6  0 . 1 3 3 4  0 . 2 4 6 3  0 . 3 5 9 2  0 .4721  0 . 5 8 5 0  0 . 6 9 8 0  

3 - - 0 . 1 4 5 9  - - 0 . 1 4 7 1  - - 0 . 1 4 8 4  - - 0 . 1 4 9 6  - - 0 . 1 5 0 9  - - 0 . 1 3 2 1  - - 0 . 1 5 3 3  - - 0 . 1 5 , t 6  - - 0 . 1 5 5 9  

( 0 . 1 2 4 3 )  b) ( - - 0 . 1 5 2 1 )  "~ 

- - 0 . 3 4 6 7  - - 0 . 1 9 0 4  - - 0 . 0 3 4 2  0 . 1 2 1 8  0 . 2 7 7 6  0 . 4 3 3 2  0 . 5 8 8 7  0 . 7 4 4 0  0 . 8 9 9 1  

4 - - 0 . 2 0 7 6  - - 0 . 2 0 9 0  - - 0 . 2 1 0 6  - - 0 . 2 1 2 0  - - 0 . 2 1 3 5  - - 0 . 2 1 5 0  - - 0 . 2 1 6 5  - - 0 . 2 1 7 9  - - 0 . 2 1 9 4  

- -  0 . 5 1 1 0  -- 0 . 3 1 3 0  --  0 . 1 1 5 3  0 .0821  0 .2791  0 . 4 7 5 8  0 .6721  0 .8681  1 . 0 6 4  

5 --  0 .2691  --  0 . 2 7 0 8  -- 0 . 2 7 2 5  -- 0 . 2 7 4 2  --  0 . 2 7 5 9  --  0 . 2 7 7 6  --  0 . 2 7 9 3  --  0 . 2 8 1 0  - -  0 . 2 8 2 7  

- - 0 . 6 9 8 0  - - 0 . 4 6 0 1  - - 0 . 2 2 2 7  0 . 0 1 4 3  0 . 2 5 0 7  0 . 4 8 6 8  0 . 7 2 2 3  0 . 9 5 7 4  1 .192  

6 -- 0 .3303  -- 0 . 3 3 2 3  -- 0 . 3 3 4 2  --  0 .3361 -- 0 .3381  - 0 . 3 4 0 0  -- 0 . 3 4 1 9  --  0 . 3 4 3 8  -- 0 . 3 4 5 7  

- 0 . 9 0 7 6  -- 0 . 6 3 1 8  --  0 .3565  -- 0 .0817  0 . 1 9 2 5  0 . 4 6 6 2  0 . 7 3 9 3  1 .012  1 .284  

7 - - 0 . 3 9 1 4  - - 0 . 3 9 3 5  - - 0 . 3 9 5 7  - - 0 . 3 9 7 8  - 0 . 4 0 0 0  - - 0 . 4 0 2 1  - - 0 . 4 0 4 2  - - 0 . 4 0 6 4  - - 0 . 4 0 8 5  

( -- 0 . 3 9 7 8 )  a~ (0 .4137 )  b~ 

-- 1 .140  - - 0 . 8 2 7 9  - - 0 . 5 1 6 5  - - 0 . 2 0 5 7  0 .1045  0 .4141  0 .7231  1 .032  1 .339  

8 --  0 . 4 5 2 2  -- 0 . 4 5 4 6  -- 0 . 4 5 6 9  -- 0 . 4 5 9 3  -- 0 . 4 6 1 6  -- 0 . 4 6 4 0  --  0 . 4 6 6 3  -- 0 . 4 6 8 7  --  0 . 4 7 1 0  

--  1.395 -- 1 .049 - - 0 . 7 0 2 9  - - 0 . 3 5 7 9  - - 0 . 0 1 3 5  0 . 3 3 0 4  0 . 6 7 3 7  1 .016  1 .358  

~ E x a c t  E T  f r o m  a s e p a r a t e  t r a j e c t o r y  c a l c u l a t i o n  f o r  C O  2 - H e :  to  b e  c o m p a r e d  w i t h  t h e  u p p e r  n u m b e r  ( p r e d i c t e d ) .  

b) E x a c t  E T  f o r  C O ~ - K r  to  De c o m p a r e d  w i t h  l o w e r  n u m b e r .  

T a b l e  3 

S c a l i n g  in  C O . - r a r e - g a s  c o l l i s i o n s  a t  E k = 8 .0 (1 .34  eV) .  T h e  u p p e r  a n d  l o w e r  f i g u r e s  r e f e r  t o  H e  a n d  K r  p a r t n e r s :  t h e  m o m e n t s  for  

C O 2 - K r  s h o u l d  b e  m u l t i p l i e d  b y  a f a c t o r  o f  1 0 - - ' .  T h e  u n i t  o f  e n e r g y  is t h e  C O  2 s y m m e t r i c - s t r e t c h  n o r m a l - m o d e  s p a c i n g  

t l  1 n 2 

0 1 2 3 4 5 6 7 8 

0 0 . 4 7 0 2  0 . 4 6 3 2  0 . 4 5 6 2  0 . 4 4 9 2  0 . 4 4 2 2  0 . 4 3 5 2  0 . 4 2 8 3  0 , 4 2 1 3  0 . 4 1 4 3  

0 . 0 6 1 9  0 .0613  0 . 0 6 0 7  0 .0601  0 . 0 5 9 4  0 . 0 5 8 8  0 . 0 5 8 2  0 . 0 5 7 6  0 . 0 5 6 9  

1 0 .2979  0 . 2 9 0 4  0 . 2 8 3 0  0 .2755  0 . 2 6 8 0  0 .2605  0 . 2 5 3 0  0 , 2 4 5 6  0 .2831  

(0 .2755 )  '~ ( - 0 . 0 3 2 2 )  b~ 

--  0 .0298  -- 0 . 0 3 0 2  -- 0 . 0 3 0 5  --  0 . 0 3 0 9  --  0 . 0 3 1 2  --  0 . 0 3 1 6  --  0 . 0 3 2 0  -- 0 . 0 3 2 3  - -  0 . 0 3 2 7  

2 0 .1262  0 . 1 1 8 2  0 . 1 1 0 2  0 . 1 0 2 3  0 . 0 9 4 3  0 . 0 8 6 3  0 . 0 7 8 3  0 . 0 7 0 4  0 . 0 6 2 4  

- - 0 . 1 2 2 2  - - 0 . 1 2 2 3  - - 0 . 1 2 2 4  - - 0 . 1 2 2 6  - - 0 . 1 2 2 7  - - 0 . 1 2 2 8  - - 0 . 1 2 2 9  - - 0 . 1 2 3 1  0 . 1 2 3 2  

3 -- 0 . 0 4 5 0  --  0 .0535  -- 0 . 0 6 2 0  --  0 . 0 7 0 4  --  0 . 0 7 8 9  -- 0 . 0 8 7 4  --  0 . 0 9 5 8  --  0 . 1 0 4 3  --  0 . 1 1 2 7  

( --  0 . 215 0 )  b) ( -- 0 . 1 0 4 3 )  =~ 

- - 0 . 2 1 5 3  - - 0 . 2 1 5 2  - - 0 . 2 1 5 1  - - 0 . 2 1 5 0  - - 0 . 2 1 5 0  - - 0 . 2 1 4 9  - - 0 . 2 1 4 8  - - 0 . 2 1 4 7  - - 0 . 2 1 4 7  

4 -- 0 . 2 1 5 7  -- 0 .2247  -- 0 . 2 3 3 6  --  0 . 2 4 2 6  --  0 . 2 5 1 5  --  0 . 2 6 0 5  --  0 . 2 6 9 4  --  0 . 2 7 8 4  --  0 . 2 8 7 3  

- - 0 . 3 0 9 1  - - 0 . 3 0 8 8  - - 0 . 3 0 8 5  - - 0 . 3 0 8 3  - - 0 . 3 0 9 0  - - 0 . 3 0 7 8  - - 0 . 3 0 7 5  - - 0 . 3 0 7 3  - - 0 . 3 0 7 1  

5 -- 0 . 3 8 5 9  --  0 .3953  - -  0 . 4 0 4 8  -- 0 . 4 1 4 2  -- 0 . 4 2 3 7  -- 0 .4331  --  0 . 4 4 2 5  - -  0 . 4 5 1 9  --  0 . 4 6 1 3  

- - 0 . 4 0 3 6  - - 0 . 4 0 3 1  - - 0 . 4 0 2 7  - - 0 . 4 0 2 3  - - 0 . 4 0 1 9  - - 0 . 4 0 1 5  - - 0 . 4 0 1 1  - - 0 . 4 0 0 8  - - 0 . 4 0 0 4  

6 -- 0 .5555  -- 0 .5655  --  0 . 5 7 5 4  -- 0 .5853  - -  0 . 5 9 5 2  --  0 . 6 0 5 2  --  0 .6151  --  0 . 6 2 5 0  --  0 . 6 3 4 9  

- -  0 .4987  --  0 . 4 9 8 2  --  0 . 4 9 7 7  --  0 . 4 9 7 2  --  0 . 4 9 6 6  --  0 .4961  - -  0 . 4 9 5 6  --  0 .4951  - -  0 . 4 9 4 6  

7 -- 0 .7247  --  0 .7351  - -  0 .7455  --  0 . 7 5 5 9  --  0 . 7 6 6 3  -- 0 . 7 7 6 7  - -  0 .7871  - -  0 . 7 9 7 5  --  0 . 8 0 7 8  

( - 0 . 5 9 1 6 )  b) ( - -  0 . 7 9 7 5 )  ") 

--0.59-06 - - 0 . 5 9 4 0  - - 0 . 5 9 3 4  - - 0 . 5 9 2 8  - - 0 . 5 9 2 1  - - 0 . 5 9 1 6  - - 0 . 5 9 1 0  - - 0 . 5 9 0 4  - - 0 . 5 8 9 8  

8 - - 0 . 8 9 3 2  - - 0 . 9 0 4 1  - - 0 . 9 1 5 0  - - 0 . 9 2 5 9  - - 0 . 9 3 6 8  - - 0 . 9 4 7 7  - - 0 . 9 5 8 6  - - 0 . 9 6 9 4  - - 0 . 9 8 0 3  

- - 0 . 6 9 1 2  - - 0 . 6 9 0 5  - - 0 . 6 g g g  - - 0 . 6 8 9 1  - - 0 . 6 8 8 6  - - 0 . 6 8 7 8  0 . 6 8 7 2  - - 0 . 6 8 6 5  - - 0 . 6 8 5 9  

=~ E x a c t  E T  f r o m  s e p a r a t e  t r a j e c t o r y  c a l c u l a t i o n  f o r  C O . - H e ;  t o  b e  c o m p a r e d  w i t h  t h e  u p p e r  n u m b e r  ( p r e d i c t e d ) .  

b~ E x a c t  E l"  f o r  C O - ' - K r  t o  b e  c o m p a r e d  w i t h  t h e  l o w e r  n u m b e r .  



Earlier quantal  Studies [21,22]-of ha rmonic  CO 2~_ 
and He, K r  collisions- have been carried_ out- -at -_ 
fixed total energies of  1 eV and 1:5 eV, 0n ¢ollinear 
systems cl0sely related to t h e  presentl~amiltonian 
(1). These  results are summarized f o r  c o n v e n i e n c e  
in table 4. The present classical c,~Iculations a r e  at 
a fixed kinetic e n e r g y , a n d  th~ scaling coefficients 
relate only de-excitation transition probabilit ies at 
the same kinetic energy. Nevertheless, some com- 
parison is possible. 

The effect of  increased mass of  the colliding 
particle in decreasing the overall ET is well known, 
and has been observed earlier [21,22]. The parame- 
ter F7. serves to quan i i fy  this fact here. F rom table 
4, it can be  seen that uHe /ioKr * 0 0 . m Z  " 00a0 a t  E T = 1 eV is 
a round 15000, and decreases to 600 at E - r =  1.5 
eV, in a manner  similar to the ratio ~ * / ~ , ~  (7000 
at E k = 4  to 200 at E k = 8 ) .  The one-quantum 
transition ratio, P,o.oo/Pm,oo also behaves in the 
same way ( =  900 at E T = 1 eV to 150 at E T = 1.5 
eV). As expected, (Plo.oo/PoLoo) Kr is much larger 

R.  R a m a s w a m y . /  C las s i ca l  t ra j ec tory  - ana l y s i s  -in a t o m - t r i a t o m  col l i s ions-:  ~ - 13-  

a t  the s~me energy. Finally, one may:observe  that 
t h e  rati  0 Pto~t /P0i .~deereases  wRh increasing total 
energy(as  hnticipateit  from the scaling analysis.: 

Although We~have compared transition proba-  
bilities at different energies , the conclusions would 
be  similar if it ~were possible to m a k e t h e  compari2 
son at the same kinet icenergy,  since the individual 
transition probabilit ies are well separated (see fig. 
1 in ref. [21]). The very ease o f  generating the 
classical moments  and performing the scaling 
analysis makes is possible to treat ~ystem~ of  a size 
considerably beyond  the scope of  any quantum 
calculation. 

At this stage therefore, it is appropriate  to 
present s o m e  results from the application of  the 
C Q  method.  An indication of  the relative accuracy 
in using CQ is obtained by  comparing the classical 
ET moments  with those obtained by  using the CQ 
transition probabil i t ies.  Al though the ratios 
ET(CQ)/ET(class ical )  and ET2(CQ)/ET2(cIass i  - 
cal) can vary considerably, when n~ or  n 2 is large, 

T a b l e  4 

Q u a n t u m - m e c h a n i c a l  t r a n s i t i o n  p robab i l i t i e s ,  Pn,n:..;,'_. for  the  C O s _ - H e  a n d  K r  sys tems .  U n l e s s  o t h e r w i s e  ind ica t ed ,  these  va lues  a re  
t a k e n  f rom ref. [21]. T h e  u p p e r  a n d  l o w e r  n u m b e r s  refer  to  ene rg ies  1 a n d  1.5 eV respec t ive ly .  T h e  u p p e r  r i gh t  t r i ang le  p e r t a i n s  the  
C O z - H e  col l i s ions ,  a n d  the  l o w e r  left  to  C O 2 - K r  

n I n 2 ¢ . , . .  a) K i n e t i c  ene rgy  m 

E T = 1 eV E T = 1.5 eV 

0 0 1.387 4.58 7.57 

1 0 2.387 3.58 6.57 

0 1 3.610 2.80 5.79 

2 0 3.386 2.58 5.56 

//1/'12 / '/1//2 

O0 10 O1 20 

O0 - 0 .74(- -  1) 0.82( -- 4) 0.10( -- 2) 
- 0 . 30  0 . 2 0 ( - -  2)  d~ 

10 0.45( -- 5) - 0.20( --  3) 0.51 ( -- 1) c) 

0 .46 (  - 3 )  - 0 . I  2(  - 2)  a) 

01 c) 0.16( -- 6) - 0.11( -- 4) 
d) 0.18( -- 4) -- 0.37( -- 3) 

20 e) 0.50( -- 6) c) 0.29( -- 5) - 
d) d) 0.18( -- 4) -- 

a~ T h e  ene rgy  o f  the  s t a t e  n l n  2 in  un i t s  o f  the  s y m m e t r i c  s t r e t ch  n o r m a l - m o d e  spac ing .  

b~ Kinetic energy in the state n,n2 (in the present units). 
c) T r a n s i t i o n  p r o b a b i l i t y  g iven  in  ref. [22]. 

d) T r a n s i t i o n  p r o b a b i l i t y  no t  a v a i l a b l e  i n  t e l  [21]. 

=~ T r a n s i t i o n  p r o b a b i l i t y  no t  a v a i l a b l e  in  e i t he r  refs.  [21] o r  [22]. 



14 

Tab le  5 
C o m p a r i s o n  o f  exact and  

R. Ramaswamv / Classical trajectory anal)sis in atoni-triatom collisions 

CQ transi t ion probabi l i t ies  P,,,~:-,,I-~ for  C O . - H e  collisions 

ntn2n'xn ~ E T = 1  eV ET = 1 . 5  eV 

Q M  ~) C Q E  b) C Q D  ¢) Q M  d) Q M  ~) C Q E  b) C Q D  c) Q M  d) 

00 10 0.74( - 1) 0.16 0.16 0.1l  0.30 0.56 0.34 0.34 
00 01 0.82( - 4) 0.50( - 3) 0.24( - 3) 0 . 2 1 ( -  3) 0.20( - 2) 0.22( - 2) 0.29( - 2) 0.29 - (2) 
10 01 0.20( - 3) 0.78( - 4) 0.51( - 5) 0.27( -- 2) 0.12( -- 2) 0.13( -- 2) 0.19( -- 2) 0.72( -- 2) 
10 20 0.51( -- 1) 0.12 0.89(-- 1) 0.89( -- 1) 0.33 0.31 0.38 0.36 
01 20 0 .11(- -4)  0 .11(- -5)  0 .44(- -5)  0 .91(- -3)  0 .37(--3)  0 .12( - -3)  0 .11( - -3)  0 .48( - -2)  

~> Q u a n t u m  results f rom refs. [21.22]. 
b) CQ excitation results, i.e. for  the process  nln z ~ n~n~. 
':) C Q  de-excitation results, i.e. for the process  n]n~ ~ n l n  2. 
a~ Q u a n t u m  resul ts  f rom ref. [23]. 

a n d  the kinet ic  ene rgy  is high, the ra t io  is c lose to 
I for  both the first  and  second  m o m e n t  o f  the 
ene rgy  t ransfer .  F o r  example ,  in C O 2 - H e  at  E k = 8. 
for  n tn2  = 80. these a re  ( - 0 . 8 9 3 2 ) / ( - 0 . 7 6 9 5 ) =  
0.86. and  9.53//10.12 = 1.06 respect ively .  O n e  can  
then  have  r easonab le  con f idence  in the ac tua l  
numer i ca l  values  o f  the C Q  results,  and  m o r e  
impor t an t l y ,  in the  physics  o f  the s i tua t ion  as 
d i sp layed  in the p ropens i t i e s  a n d  relat ive m a g n i -  
tudes  for  the d i f ferent  t ransi t ions .  Since we have  
used  on ly  36 t ra jector ies  in these ca lcula t ions ,  the 
quasic lass ical  h i s t o g r a m  m e t h o d  wou ld  be  quan t i -  
ta t ively  i nadequa t e  here. 

In  table  5. t rans i t ion  p robab i l i t i e s  f r o m  q u a n -  
t u m  ca lcula t ions  a n d  the p resen t  C Q  are  c o m p a r e d  
at  f ixed tota l  energy.  T h e  essent ia l  fea tures  o f  the 
two coll is ion cases seem to be  r e p r o d u c e d  qui te  
well. At  the h igher  total  ene rgy  this a g r e e m e n t  
improves .  Also  shown  are  q u a n t u m  t rans i t ion  
p robab i l i t i e s  in a s imi lar  sys t em (with  a d i f fe ren t  
a n h a r m o n i c  molecu la r  po ten t i a l  at  the s a m e  en-  
ergies.  Excep t  for  the process  10 -01  which  is p o o r l y  
descr ibed ,  the C Q  results  a re  surpr i s ing ly  g o o d  if 
o n e  al lows for  the na ive ty  o f  the m e t h o d  i tself  a n d  
the fact  tha t  it involves  marg ina l  add i t iona l  e f for t  
to ob ta in  the  ET  m o m e n t s .  

T h e r e  a re  several  ways  in which  the  C Q  resul ts  
cou ld  be  " ' i m p r o v e d " .  W h e n  b o t h  first and  second  
C Q  m o m e n t s  show a p p r o x i m a t e l y  the s a m e  devia-  
t ion f r o m  the classical  ET  m o m e n t s ,  o n e  cou ld  use  
this as a cons t an t  mui t ip l ica t ive  f ac to r  to change  
the  t rans i t ion  probabi l i t ies ,  a l t hough  a s s u m i n g  
equa l  relat ive e r rors  for  all p rocesses  is ques t iona -  

ble.  A be t t e r  m e t h o d  at  low kinet ic  energies  is to 
use  the q u a n t u m  ECS law [24] on  a t rans i t ion  
a m p l i t u d e  k n o w n  to be  m o r e  accura te .  F o r  e x a m -  
ple,  P~o.3o ( E k  = 4 ) =  0.382, which  gives Pt0.0o ( E k  
= 4 ) =  0 . 9 6 ( - - 1 )  a t  E x = 1.08 eV, which  is c loser  
to the accu ra t e  q u a n t u m  resul t  (see tab le  4). 

4. D i s c u s s i o n  

In  us ing  classical  m e c h a n i c s  in s t udy ing  molec -  
u la r  coll is ions,  o f t en  o n e  can  m o s t  re l iab ly  c o m -  
p u t e  initial  s ta te  se lec ted  quant i t ies .  T y p i c a l l y  these  
a re  m o m e n t s  o f  d y n a m i c a l  va r iab les  tha t  c h a n g e  
du r ing  the coll ision,  bu t  a re  c o n s t a n t s  o f  the  m o -  
t ion  a s y m p t o t i c a l l y  as t ---, __ oe. F o r m a l l y .  such  a 
p r o b l e m  is so lved  b y  the  classical  t echn ique  o f  
va r i a t i on  o f  cons tan t s ,  a n d  this leads  in a s t ra ight -  
f o r w a r d  w a y  to the  classical  sca l ing  theo ry  [14]. 
F o r  a s y m p t o t i c a l l y  s e p a r a b l e  o r  in t eg rab le  sys-  
tems,  eq. (7) a n d  its genera l i za t ion  to  m o r e  degrees  
o f  f r e e d o m  holds.  F o r  n o n - i n t e g r a b l e  sys tems ,  the  
C S T  is val id on ly  in a res t r ic ted  r eg ime  for  r egu la r  
levels [19]. 

In  the e x a m p l e  discussed,  the C S T  is seen  to 
ho ld  to a high degree  o f  accuracy .  I t  suff ices  to 
c o m p u t e  the  ene rgy  t r ans f e r  f r o m  9 s ta tes  to p re -  
dict  tha t  f r o m  at  least  81 ( if  no t  m o r e )  o the r  levels 
in the v ib ra t i ona l  man i fo ld .  A s  the n u m b e r  o f  
in te rna l  degrees  o f  f r e e d o m  increases ,  the C S T  
g rows  in uti l i ty,  no t  on ly  as a p red ic t ive  tool,  bu t  
a l so  as a m e a n s  o f  c o m p a c t i n g  large a m o u n t s  o f  

da t a .  
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This similarity with the quantum ECS law is 
worth emphasizing. In a previous collision case 
[16] as well as the present one, simple classical- 
quan tum correspondences led to an expression of  
the classical scaling coefficients in terms of  quan- 
tum state-to-state transition amplitudes. This is a 
major advantage of  the CST: when the number  of  
actual trajectories is insufficient to employ even 
the quasiclassical histogram method, the scaling 
analysis can be applied. The information that  can 
be derived from these coefficients is in agreement 
with the results of  separate quantum-mechanical  
treatments of  the same collision cases. However, 
since examination of  scaling coefficients reveals 
that  they consist of  complicated combinations of  
various transition probabilities, this kind of  infor- 
mation is at best qualitative. (It is also likely that 
in most "'large" collision systems, such informa- 
tion is adequate and comparable to that obtained 
by approximate dynamical  theories [28].) For  
model CO2-He and Kr  collisions, it has been 
possible to show that the trends apparent in the 
classical scaling coefficients are an accurate reflec- 
tion of the true quantal  behaviour [21,22]. 

As a useful addit ion to the largely inferential 
da ta  obtained through the scaling analysis, the 
method of  continuous quantization was also ap- 
plied to obtain transition probabilities indepen- 
dently. This was seen to augment the utility of  the 
purely classical analysis; however, the CQ method 
itself gives no indication of  the overall quality of  
the classical calculations. Where comparison with 
exact quantum-mechanical  results was possible, 
the CQ results were seen to be in reasonable 
agreement. (A weakness of  the CQ method, how- 
ever, is that it may not be amenable to the Monte  
Carlo sampling of  the initial phase which is 
customary in larger systems.) 

There are two other methods [6-8] of  extracting 
quantum information from classical moments.  One 
[6,7] uses an information-theoretic constraint of 
maximum entropy to invert moments  of  the en- 
ergy transfer to obtain quantum transition proba- 
bilities. The other [8,29], employs cross-correlation 
moments  and is similar in some respects to and 
complementary to the scaling analysis in section 
2.2. The cross-correlation moments ,  M i j  = 

(A¢~Ac~), where Ac k is the change in energy in the 

k t h  oscillator,.and ( ) denotes the phase average 
(as in eq. (4)), from low initial states c a n  be 
directly expressed in terms of  quantum transition 
probabilities [29]. This latter method works rea- 
sonably well, although sometimes the inversion 
procedure can yield unphysical results (such as 
negative transition probabilities) due to the errors 
introduced by the use of  classical mechanics. The 
advantage of the scaling analysis in this context is 
that the classical calculations can be performed in 
the regime where classical mechanics is most likely 
to be accurate - e.g. for high quantum numbers, 
since the analysis only requires the coefficients y. 
On the other hand,  the scaling analysis can be 
more complicated in some eases. A necessary in- 
gredient in the scaling analysis is the quantum 
ECS theory [24]; for anharmonic oscillator sys- 
tems, the ECS expressions are often cumbersome, 
and the quantum-number  dependence is not trans- 
parent. In such a situation, the cross-correlation 
method has an advantage. A more detailed com- 
parative s tudy of  the various moment  analysis 
methods is presently under way [30]. 

The extension to more degrees of freedom d-oes 
not pose any additional problem, unless there is 
widespread intramolecular chaos. It should be em- 
phasized that although the example chosen here is 
simple, both the methods, classical scaling and 
continuous quantization are valid for more com- 
plicated cases since they only require that action- 
like variables be defined. This approach can there- 
fore prove useful in the accurate (e.g. a more 
realistic in termolecular  potent ia l ,  a p roper  
anharmonic description of  the molecular system) 
modeling of  systems of chemical interest. 
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