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The method of avo,ded crossings is apphed to a s,mple molecular model, the generahzed llenon-tte~les system of cou- 
pled oscillators The aim here Is to determine the onset of ~ide-spread chaotic motions The method is used to locate, in a 
s,mple manner, the resonances that lead to chaotic motions for different choices of parameters ~herem the frequencies of 
the unperturbed oscillators are in the ratio 3 : 4 and 7 . 13. The accuracy of the prediction is verified against numerical cal- 
culations of classical trajectories 

1. In t roduct ion  

In recent years there has been considerable interest 

m the study o f  classically non-integrable dynamical  
systems. Tlus has relevance to a variety o f  areas o f  
research in physics and chemistry [1--3] ; m particular 

the intramolecular dynamics o f  vibrat~onally exci ted 
molecules is of ten  cast m the form o f  a problem in 
classical, non-linear dynamics A major concern has 

been understanding the nature o f  mtramolecular  

energy transfer in classical models o f  molecules. Here 
it ~s maportant to characterize the different  kinds o f  
mot ion that can occur [ 4 - 6 ] :  regular or quasi-period- 
Ic, and irregular or chaotic For  an N-degree-of-freedom 

mtegrable, conservative system, the motxon is con- 
fined to N-dimensional t o n  in the phase space [4].  
Upon addition o f  a non-integrable per turbat ion cha- 
otic mot ions  can occur  as well;  the extent ,  or measure, 
o f  tlus latter type o f  mot ion  Is related to the relative 
slze o f  the perturbation.  The KAM theorem [4--6] 

winch deals with this general problem,  and numerous  
apphcat~ons have been extensively reviewed recently 

[7-9]. 
This paper is concerned with the behaviour o f  

"molecu la r"  systems with N = 2 degrees o f  f reedom. 

The mare objective here is in the nature o f  an ab 

initio predict ion o f  when the character o f  the overall 

mot ion  changes from being largely regular to a mix- 
ture o f  regular and chaotic mot ions  -- the so-called 
chaotic transition. The hamil tonian studied here has 

two parameters,  and ,s a generalizat,on o f  the H ~ n o n -  
He,les system [ 10]. 

H =  ~ _ ( p ~ ' v p s  + c o T q ~  _ _ .  - ,'~tl~. (1) 

where the p, and q i  refer to the momenta  and coordi- 
nates o f  the two degrees o f  freedom, i = 1 .2 .  and the 

col are the respective frequencies o f  the oscillators 
The per turbat ion parameters are e and X 

A technique o f  detect ing (by reference) the exis- 

tence o f  chaotic mot ions  has been proposed recently 

[ 11 ] for such coupled oscillator systems This 
" m e t h o d  of  avoided crossings", whlch is based on 
classical per turbat ion theory,  has previously been 
successfully applied to two-degree-of-freedom s)steins  

w~th a smgle per turbat ion term: here ~t ~s applied to 

the hamdtoman  (1). 
Model sy stems, such as dae one above have found 

much apphcat ion m chemistry [3].  being smlple. 
protot_vp~cal molecules (with N = 2. this is the collin- 
ear tr iatom).  By varying the parameters co t. ~ and X. 

one can mimic different molecular  situations In par- 
Hcular. this system has been quantlzed b3 a ~ariety o f  
semiclassical methods  [ 12.13]. to e \ a m m e  alternate.  
more tractable means o f  studying the quan tum me- 
chanics o f  molecules. When the classical mot ion  is 
regular, well-kno,vn correspondence principles relate 
features o f  the classical mot ion  to those o f  quantum-  

mechanical  s tat ionary states -- this forms the so-called 
regular spectrum [ 14]. The  absence o f  such a principle 
for classically irregular ,notions and quan tum states 
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has resulted in the semiclassical hm~t o f  such levels, 
the irregular spect rum [ 14],  being rather  less well 
unders tood.  In addi t ion ,  tile s tudy o f  classmally cha- 
otic mot ions  has per t inence to  ln t ramolecular  energy 
random~zahon [3 ,15] .  I t  is generally believed that  
statist ical  theories  apply  when tile classically irregular 
mot ions  predomina te .  

In studies in non-hnear  dynamics ,  different  cri teria 
have been used [10,16,17] to determine  whether  the 
mot ion  is regular or chaot ic ,  and several me thods  [3, 
18] have been proposed  to predmt  the onset o f  chaot ic  
mot ions .  It is perhaps wor th  observing that in non- 
integrable ~ystems, irregular regions exist at all ener- 
gies, and most  cri teria for judging file nature  o f  the 
mot ion  depend on the ex ten t  o f  chaos. When the Ir- 
regular regions are ex t remely  narrow, these wdl not  be 
readily apparent  m numerical  calculat lons that  exam- 
ine, say, the Pomcard surface o f  sectlon [10] or  the 
rate o f  separat ion o f  nearby t rajectories  [ 16] Thus 
the not ion  o f  a chaotm transi t ion is poor ly  def ined 
when dlssocmted from a sense o f  the extent  o f  irregu- 
lar behaviour .  In tlus paper ,  we confine our  interest  to 
when this measure ~s sufficlently large * to be de tec ted  
by  any simple cr i ter ion 

Tile wbra t iona l  hamll tonians  o f  systems o f  chemical  
interest  are typica l ly  extensions o f  eq. (1). Thus it is 
necessary to  explore  more  fully ab i n m o  me thods  o f  
predict ing chaos in such systems.  This paper  is a step 
in that  direct ion The  me thod  o f  avoided crossmgs. 
wluch Is discussed in sect ion 2, being far f rom a 
"b l ack -box"  techmque,  as such calls for jud ic ious  ap- 
phcat ion.  Tile instances where care must  be taken.  
and addi t ional  caveats are also discussed m section 2. 
Section 3 deals with the predic t ions  o f  the me thod ,  
and the verif icat ion o f  the existence and onset  o f  cha- 
otic mot ions  for chomes o f  various parameters  A dis- 
cussion and summary  fol lows in sect ion 4 

2. Theory  

The hamil tonlan  considered here Is gwen by  eq. (1)  

" The  p rac tma l  c o n s i d e r a t i o n s  revolved he re  usua l ly  m a k e  it 
d i f f i cu l t  to  observe  c h a o t i c  m o U o n s  b y  the  P o m c a r 6  sur- 
face  o f  s e c n o n  or  by  o t h e r  m e t h o d s  i f  t he  m e a s u r e  o f  the  
i r regular  reg ions  as less t h a n  0 0 5 - - 0 . 1 .  H e n c e  the  t e rm 
" ' suf f ic ient ly  l a r g e "  as used  m thas p a p e r  will d e n o t e  this  
a p p r o x i m a t e  range .  

and has as the unper tu rbed  part .  

1 2 o92q2) +1 ") , 2 H0 = ~ (P l  + i(p5.  + 6o~q2) .  (2)  

This is integrable,  and a c t i o n - a n g l e  variables [5] can 
be def ined:  

O, = t a n - l ( - P i l ~ o , q , ) ,  i =  I ,  2 .  (3)  

Thus 

//o(P,q) ~no(O = ( 2 ~ r ) - 1 ( I ~  ~ i  + I~_,,~2) - ( 4 )  

Consequent ly ,  the mot ion  o f H  0 occurs  on a 2-torus 
when co I/co 2 is an lrratxonal fract ion,  and consists o f  
per iodic  orbi ts  when this ratio is rat ional .  The pertur-  
ba t ion  terms are 

H i = - e q i q 5  - , H 2  = _ ~ l  3 . 

The haml l ton ian  H '  = H 0 + H l is the generalized 
Barbanis (GB) system [ 19], and H = H 0 + H I + H 2 is 
the generalized H d n o n - H e d e s  (GHH) system. Fo r  a 
a small number  o f  special values o f  the rat ios COl/CO 2 
and e[?,, tile system is actually integrable [20] ; in the  
general case. however,  no global canomeal  t ransforma- 
t ion exists which allows for an expression o f  H as a 
funct ion o f  ac t ion variables alone. Specif ical ly,  for  any  
non-zero e, H '  is always non-integrable.  In this situa- 
t ion.  the  KAM theorem applies" for suff icient ly small 
per turbat ions ,  most  o f  the tori  will still be preserved 
al though m dis tor ted  form. Such systems have been 
te rmed quasi-integrable. Non- toroidal ,  i.e. chaot ic  mo- 
t ion Is also possible,  and the object ive is to de termine  
when such mot ions  have appreciable  measure.  This is 
accomphshed by  the following procedure .  

T h e  m e t h o d  o f  a v o t d e d  cross ings  [ 1 1 ] .  Although 
tlus me thod  has been presented earlier, it is worthwhi le  
to  recall the salient features.  

(i) The hamdton ian  H ( p ,  q ;  e, ~,) is t ransformed to 
a Birkhoff  normal  form in new canonical  variables 
~,11" F(~,Vl, e,X). F is an integrable approx ima t ion  to  
some low order  in the p e r t u r b a u o n  parameters ,  e, X. 
A further canonical  t ransformat ion  o f  this normal  form 
to a c t i o n - a n g l e  va r iab les / ,  0,  yields an a p p r o x i m a u o n  
to H m terms o f  ac t ion variables alone,  F ( ~ , r l ;  e ,~) 

K ( I ;  e,X).  Since K and F are integrable hamll tonians,  
fixing a set o f  a e t i o n s l  defines a torus  in the  mot ion  
o f F .  V i e w i n g / / a s  arising f rom a non-integrable per- 
tu rba t lon  o f F ,  by  the KAM theory ,  some o f  these tori  
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will persist, and some will be destroyed. The former 
are denoted stable tori, and thus what is needed is a 
way to declde which tori will survive. 

The stabdlty criterion for tori ~s constructed by 
analogy with the quantum-mechanical  case. With a 
single parameter,  the generic behaviour of a quantunr  
system is the absence of eigenvalue degeneracy [5]. 
Thus, In a graph of elgenvalue versus parameter  varia- 
t ion. one observes an "avoided" crossing The use of 
non-degenerate per turbat ion theory [21],  on the 
other hand,  gives rise to crossing at approximately the 
same values (of  energy and parameter) when an 
avoided ero~ing occur~ in the full system. Thus  a 
crossing in the per turbat ion approximat ion to the 
system is viewed as the signature of  an avoided cros- 
sing in the eigenvalue spectrum of the actual system. 
(Exceptions to this are d~scussed m detail at the end 
of tiffs sectlon.) 

Several avoided crossings within a small range (of  
energy, parameter) were interpreted [22] as giving rise 
to a quan tum chaotic state. In the nelghbourhood of  
a crossing, off-diagonal couphng extensively mixes 
the wavefunctions,  so that ff enough states are involved 
in a crossing, i.e. a multtple avoided crossing, the ex- 
pectation value of a given dynamical  q u a n m y  m the 
quan tum chaotic state might approxnnate  the classical 
microcanomcai average at that energy. 

By the standard quantum--semiclassical correspon- 
dence principle [ 14], an invarmnt torus IS identified 
as the analogue of  a stat ionary wavefunction There- 
fore, the semiclasslcal interpretat ion of  the mixing 
that occurs at a multiple avoided crossing is essentially 
a s tatement  of  toro~dal instabihty for the tori in- 
volved *. The mvariant  tori that correspond to quan- 
tum stationary states are those that can be quantized 
by the EBKM rules [14,24].  those for which 

f p - d q  = (n I + t:t//4)t/ , i = 1 , 2 .  (5) 
Cz 

Here C i denotes a topologically distract path. t~ is the 
Maslov index, h Planck's constant  and the n~ are in- 

tegers. 

* It is as If an orbit x~hich is originally confined to the portion 
of the energy shell occupied by one toms, Is able to x~ander 
in  t h e  r e , i o n s  o c c u p i e d  b~. o t h e r  to t1 .  :and thas  " ' s u p e r p o s l -  
t l o n ' "  o f  d i f f e r e n t  m o t i o n s  g l~es  a n  a p p a r e n t l x  r a n d o m  be -  

havlour See e g fig 9 m ref 123]. 

(i 0 Tiffs criterion for torus instabihty is extended 
to all tori by revoking a lattice structure in the space 
of  actions (with some chosen unit  of  action),  thereby 
selecting for further examinat ion,  sets of  actions with 
integer separation. The classical eigenvalues for th~s 
set of  actions are examined as a funct ion of  the pertur- 
bat ion parameter(s). The term eigenvalue is used In 
analogy with semlclasslcal mechamcs, and the set of  
actions as chosen here is arbitrary, save for the lattice 
structure.  

{n + , , / 4  + ~ I-0t14 % X <<-e l l4 ,n  E Z N } _ 

By varying Z- one searches for the occurrence of 
multiple crossings in a small nelghbourhood of param- 
eter values, around the particular value of interest. 
The uni t  of  action is chosen (see below) to be small 
enough to detect the effect of  the per turbat ion.  FroIn 
tins examinat ion,  one ma3 determine t i l e  onset of  cha- 
otic motions as the lowest energy at x~hich multiple 
(and overlapping) avoided crossings occur. Usuall} 
this happens for ~ = -0t[4.  

In purely classical terms, the abo~e method is mere- 
ly a graphic procedure for determining resonant peri- 
odic orbits and their multiple oxerlaps [3.11.25].  The 
imposed lattice structure,  as a grid of  actions, ensures 
that at every avoided crossing, there is a zero-frequencx 
and hence a resonant periodic orbit,  and b) using the 
appropriate scale for the unit  of  action, the ox erlapping 
of  these resonances IS taken Into account  

In an earlier publicat ion [11]. this method was ap- 
plied to the cases of  cubic and quartlc non-linearities 
m coupled oscillator systems with a single per turbat ion 
term. For the GHH hanfil toman, the classical perturba- 
t ion method of the Lie transfornt [26] is apphed to 
obtain the F and K po12~ nonuals  [see 0)] -  daese are 
given in the appendix. 

A point  that needs to be discussed here is the role 
of the umr of  action m relation to the per turbat ion 
parameters e and ~. The present approach is a semi- 
classical one. m the sense ~hat classical and quantal  
conceptual  methods  are mixed. We ha,,e remarked 
earlier that in addi t ion to locating avoided crossings, 
one must also estimate their width to determine the 
extent  of  overlap -- it IS the multiple overlapping of  
avoided crossings that leads to chaos [11 ]. 

In a discussion of  the quantal  irregular spectrum. 
Berry [27] has distinguished, for fixed per turbat ion 
parameter values (e.X). three semiclassical hmits  de- 
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pending on the relative size o f  Planck 's  constant  h. 
When h t s  relatwely large (regime 1), the volume of  
phase space associated with a quan tum state can be 
larger than the chaot ic  regions. Hence almost  every 
semlclassical s tate would  be insensitive to  the under- 
lying dynamics  -- ahnost  any per tu rba t ion  theory  
would  work.  In terms o f  the present analysis, few 
states would be revolved in avoided crossings If  h is 
very small (regime 3), then the volume o f  phase space 
associated w~th each quan tum state would  be propor-  
t ionate ly  smaUer, and almost  every quan tum state 
would be sensitive to the classical dynamics .  Thus,  
there would be several avoided crossings, bu t  nei ther  
would  the degree of  avoidance be large, or  would the 
overlap between the crossings be significant.  Fo r  mter-  
medmte  h (regime 2), bo th  regular and irregular quan- 
tum states coemst .  In tlus regime, the umt  o f  ac t ion is 
nei ther  so large as to have too  few avoided crossings, 
nor  so small as to have too  many,  but  insignificant 
avoided crossings 

As the interest  here is m being able to est imate the 
gross features o f  the classical mot ion ,  when the mea- 
sure o f  the chaot ic  flows becomes apprecmble,  it ~s 
regnne 2 that  ~s o f  interest .  The umt  o f  act ion is to  be 
chosen so that  the relattve volume associated with  a 
gwen state will be sensitwe to an apprecmble amount  
o f  chaot ic  mot ion  F rom earher  studies o f  some sys- 
tems, there is an indicat ion o f  the relatwe size o f h  
that  is appropr ta te .  Fo r  the GHH w~th 601 = ~ 2  = 1, 
?~ = - e / 3 ,  e = - ( 8 0 )  -1 /2  and h/2rr = 1, it  was found 
that  avoided crossings were sparse [21,28] .  The sys- 
tem, which d~ssocmtes at an energy o f  13.33 suppor ted  
only 100 bound  levels ( the effective number  is even 
lower because symmet ry  separates these into non- 
interact ing sets o f  ~ 6 5  and 35 states).  This corre- 
sponds to the  semiclassical regime I ; wlth~z = 0.62 
(or  eqmvalent ly ,  with e = - 0 . 0 8 8 ) ,  the  system has 
twice the number  o f  bound  states,  and there are sever- 
al avoided crossings [21] ,  indicat ing that  for this value 
o f  h,  e is consistent  wi th  regime 2 discussed above.  In  
the  examples  stud~ed in this paper ,  the parameters  ~, X 
and the unit  o f  act ion have been adjusted such that  the 
average densi ty  o f  states conforms more closely wi th  
the la t ter  system. 

At  tlus stage ~t is appropr ia te  to ident i fy  some o f  
he shortcomings o f  the method .  Firs t ,  this technique 
s based on a per turba t ion  scheme, and it can be relied 
tpon only i f  all parameters  are o f  the appropr ia te  rela- 

uve s~ze. This is usually true in molecular  systems,  
when a normal -mode  p~cture ~s a good  star t ing point .  
Secondly ,  and more  ~mportantly,  there  are several 
exantples o f  systems wherein bo th  real crossings 
(actual  degeneracy)  and avoided crossings can occur  
in file quantum-mechanica l  spect rum as a parameter  
is vaned  *. while the classical mo t ion  is regular On 
the basis o f  pe r tu rba t ion  theory  alone,  i t  is impossible 
to  dlst ingmsh be tween the avoided crossings o f  mteg- 
table and non-integrable systems;  thus the inferences 
drawn above [see (i)] can be qui te  erroneous.  I t  seems 
simplest  at this stage to exclude mtegrable  systems 
from such analysis. Recent  deve lopments  [30] have 
made ~t possible to de termine  whether  a system is in- 
tegrable by using the Painlev~ p roper ty .  When apphed 
to the GHH. th~s indicates that  the system is mtegrable  
for the cases [20] X/e = 2 and (6011w2. X/e) = (1 ,1 /3 )  
and (4, 16/3). The  me thod  o f  avoided crossings cannot  
be apphed in these instances. In addi t ion ,  the pseudo- 
integrable case [29] (where the mo t ion  is regular, bu t  
not  on a torus)  should be exc luded  as well,  a l though 
for systems such as (1)  wi th  smoo th  potentmls ,  this 
except ional  behaviour  is unl ikely  to occur.  The require- 
ment  o f  an external  check to  exclude certain types  o f  
systems is a def ic iency o f  the me thod .  ~t awmts fur- 
ther research to device correspondingly  sat isfactory 
internal  checks.  

3. Appl ica t ions  

The  GHH system is best  t rea ted  as a fur ther  per- 
tu rbed  GB system;  one reason being that  the te rm H 2 
is not  capable o f  in t roducing any real degeneracies m 
the elgenvalue spect rum.  Thus any avoided crossings 
in H '  will remain avoided crossings m H. By using the 
expressions for the  canonical  t ransformat ions  given in 
the  appendix ,  the  energy versus paramete r  curves can 
be  ob t a me d  in a s t ra ightforward manner .  We first con- 
s~der H 0 as the basle hami l tonian  out  o f  which the 
GB arises; thus e is varied around the value o f  interest  
wi th  X = 0. Th~s gwes in format ion  regarding the 

* See, e g. ref. [29] The system studied here, a bflhard whose  
boundary  is a polygon with angles a rational multiple of  ~r 
is somewhat  special" there exist n independent  constants  o f  
the motion, which occurs on a multiply handed sphere, n o r  

a torus Rlchens and Berry have termed this type o f  regular 

behaviour pseudo-integrability 
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Flo~ 1 Constant-action curves for the GHH system with to~ 
= 1.6. w 2 = 0 9. and e = 0 08. X = - I / 2 .  c = 1. asa function 
of the perturbation parameter h The curves are indexed by 
integers (n l, n 2) [see eq (A 3)] 

avoided crossings in the GB system. (Note  that  there 
can be no real crossings in any GB system.) The further 
avoided crossings induced by then varying X yields the 
reqmred informat ion in the corresponding GHH sys- 

tem. This analysis is performed for two different 

chomes o f  the parameters.  
In the first, the frequencies and per turbat ion pa- 

= 1 .6 ,6o~[=  9 ,  e = 0  X = 0 . 0 1 .  rameters are: ¢oi 0 08, 

There have been some previous studies [ 11,31] o f  the 
system with A = O. Trajectory calculations by Sorb~e 

and Handy [31] gave evidence for the existence o f  
appreciable chaotic mot ions  at an energy o f  ~ 19 units, 

and the system dissociates at 25.3125 umts  The pres- 
ent method ,  when applied to this GB system showed 
a lowest set o f  avoided crossings at around the same 

energy [ 11]. 
The  eigenvalue curves * under further variation o f  

(with fixed e = 0 08) are shown in fig 1. The system 
dlssocmtes at 23.53 units for X = 0.01,  the lowest 

avoided crossings again occur at around 18.9 units. 

Varying c by a small amount  between c = 0.9 and 
c = 1. does not  change this lowest energy o f  mult iple  
avoided crossings substantially: further,  the same set 
o f  action curves * Is involved in the avoided crossings 
in both tile GB and the corresponding GHH system. 
The direct maplicatlons are that  (1) in the GHH system. 

the onset o f  widespread chaos occurs at an energy only  
marginally lower than in the corresponding GB system, 
and (2) in both systems, the route towards large-scale 
chaos is very similar and this chaos occurs in the same 
kind o f  region o f  phase space in ei ther system. 

These predictions can be checked by comput ing  

tra.lectones for the latter system. A simple visual crite- 
rion for determining whether  the mot ion  is regular or  

not  Is the Pomcar6 surface o f  section Using several 

trajectories on the energy shell, one can examine the 
overall structure o f  the phase space. Below E ( the 
total energy) = 18 units. ~t is difficult  to locate any 
chaotic orbits, for the reasons outhned  m section 1. 

Most tori are preserved as in the tCa, M theory.  At E 

= 19 units, on the o ther  hand. the fraction o f  chaot ic  
trajectories is measurable which mdmates that  the 
chaotic transition does indeed occur  around this 
energy. The surfaces o f  section at the two energies 
are shown m fig 2 One can see that  the chaotic  regi- 
ons m fig 2b are indeed analogous to the regions o f  
phase space that first show widespread irregular be- 

ha~lour in the GB system with X = 0 (see fig. 2 In ret- 

[31]). 
The second system treated here has parameters:  

co i = 0.49. w5 = 1.69. e = 0.1, X = 0.01. The  lowest 
few eigenvalues for this s3 stem h a v e  been obta ined  

from trajectory [12] and per turbat ion [13] methods .  

The interest in these particular parameter  values is due 
to observations by Hutchinson and Wyatt  [32] that  
the Wigner funct ion [27] for the quan tum states in 

this system shows regular qu in ta l  behavlour  for  all 
bound states, and unhke most systems that  have been 
studied, classical chaotic mot ions  occur  only at very 
high energies relatwe to dissociation, and even here. 
a substantial fraction o f  the t o n  still survives. It may  

* The s.~ mmetry of the perturbanon term Hi separates the 
bound states into tx~o mutually non-interacting sets. 
{n 1. n21n 2 = 1.3.5 . . . .  odd integers) and {n i. n21~22 = O. 
2 4 ..... even integers) and it suffices to study the latter set 
of states. 

=* In fig 2 of ref [ I 1 ] the labels (ni. n2) for the curx es marked 
(12.4) and (8.10) were inadvertently interchanged. 
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acU0n curves  are s h o w n  in fig. 1, a t  ~" = 18 un i t s  (a) and  for 
E = 19 u m t s  (b)  

b 

Fig 3 (a) Constant-aet ton curves for the GB system with toy 
= 0.49, to~ = 1.69, • = - 1 / 2 ,  c = 1, as a funct ion o f  the per- 
turbat ion parameter  e. (b) With e = 0.1, the fur ther  develop- 
ment  of  the actxon curves under  the effect o f  the second pa- 
rameter,  A. To gave the appropriate  density o f  states, the uni t  
o f  action c has been reduced to 0 85. 
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Fig 4. Surfaces of  section for the GB system (action curves are given in fig. 3a) at (a) E --- 1S umts and (b) E" = 15.S umts 

be n o t e d  that  th e  s y s t e m  as n o t  in tegrab le ,  and  the  pa- 
rameter  rat ios  are n o t  c lo se  t o  the  spec ia l  va lues  w h e n  
the  G H H  has  th e  Pain lev6  p r o p e r t y .  

First  c o n s i d e r  the  G B  s y s t e m .  T h e  d i s s o c i a t i o n  ener-  
g y  is 1 7 . 4 9 .  T h e  z e r o t h - o r d e r  f r e q u e n c i e s  are  in  the  

ratio 7 " 1 3 ,  which is a high-order resonance. The 

action curves for X = - 1 / 2 .  c = 1 are shown m fig 3a, 
in  th e  e n e r g y  range 14  < ~ E < ~  18 .  W h a t  c a n  b e  n o t i c e d  
is the  s t ruc ture  o f  the  a v o i d e d  cross ings  a r o u n d  e = 0 . 1 .  

t h e y  o c c u r  in  w e l l - s e p a r a t e d  b u n c h e s  c o r r e s p o n d i n g  to  
I A n ]  I : IAn- , I  = 7 : 4_ D u e  t o  the  large d i f f e r e n c e s  in 
th e  q u a n t u m  n u m b e r s  o f  the  i n t e r a c t i n g  s tates ,  o n e  

E : I0 0 (a)  E = tO 5 (b) 
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Fig 5 Surfaces o f  section for the GHH system (action curves are shown in fig. 3b) at (a) E = 10 units and (b) E = 10.5 uni t s  
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expects that these do not  have substantial  width. The 
lowest set of  crossings centered at e = 0.1 is at E 
15 25, and the prediction therefore is that chaotic 
m o u o n s  will become appreciable only around that 
energy. 

When ?, is now increased from 0 to 0.01, the disso- 
cmtlon energy is lowered to 11.46 units. To conform 
to the typical density of  states in the previous systems, 
the appropriate value o f c  is somewh"t smaller, c 
0.85. With this value of  the action unit ,  the energy 
curves for e = 0.1 are presented in fig 3b in the range 
9 ~<E < 12 Multiple avoided crossings occur around 
E = 10 25 and here the expectat ion is that appreciable 
chaos sets m only at tins high (relative to dissociation) 
energy. Interestingly, the curves for X = 0, c = 1, i.e. 
the quantal  states examined in ref [32] show no mul- 

tiple avoided crossings; this is a good example of  the 
regime 1 behaviour discussed in section 2. 

Surfaces of  section for the GB and GHH systems 
have been computed and are shown in figs 4 and 5. 
For  the GB system, the surface of  section at E = 15 
&splays regular behaviour, whde at E = 15 5, there is 
evidence of chaotic mot ion.  For the GHH system, the 
corresponding surfaces at E = 10 and E = 10.5 indicate 
the onset of  chaos around the latter energy. 

As m other similar systems, the extent  of  classical 
chaos increases with energy. One can obta in  the mea- 
sure of  regular mot ions  from the surfaces of  section. 
Thls informat ion is summarized in fig. 6, where the 
fraction of  regular regions, the VAK density [6]. for 
the systems examined here is graphed versus the 

scaled energy, E[E  dlssociatm n. 
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Fig 6 Relative measure of regular motions (the VAK density) 

- • • 2 2 for the systems studied here, - - : to I = 1.6, w2 = 0 9, e = 
0.08, h = 0 01 ; A-= and o - - .  are for to21 = 0 49, to] = 1 69, 
a = 0.10, h = 0 and h = 0 01 respectively. For comparison, the 
corresponding information for col = ¢o2 = 1, ~ = -1 .  X = 1/3 
(taken from ref [ 10]) is also shown . . . .  

4. Discussion 

The results presented here, and prevtous work [ 11 ] 

combine  to show the u t ih ty  of  the method of  avoided 
crossings in detecting classical chaos Except for the 
case of  the specific resonances, where the snnple per- 
turba t ion  theory breaks down,  this method can be 
applied to a variety of systems; this at least partially 
bypasses the need for comput ing large numbers  of 
trajeetortes. Addit ional  maportant exceptions are in- 
tegrable systems, where the method falls entirely,  it 
is to be emphasized that whde the eigenvalue spectrum 
of non-integrable systems show avoided crossings, the 
reverse of  tins s ta tement  ts not ,  m general, true. Ar- 
bitrary integrable systems with any elgenvalue distri- 
bu t ion  whatsoever can be constructed (speetfieally, 
for example, the integrable hamil tonian f given m 
section 2 will have a spectrum quite similar to that of  
H) .  Thus we exclude these cases. This can be done 
most easily by using the recently developed criterion 
of  the Painlev6 property to identify the special values 
of  the parameters when the system becomes integ- 
rable [20,30].  At  present there is no reasonable way 
in which the avoided crossings method can itself be 
used to distinguish between integrable and non-inte-  
grable cases 

I t  is greatly desirable to have available a simple reh- 
able method for predicting the occurrence of wide- 
spread chaos in molecular systems. On the one hand, 
it is necessary to know the regime of  applicability of  
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statistical theories which impl ic i t ly  assume the ergod~c 
hypothes is  [33].  On the o ther  hand,  the lack o f  simple 
c lassmal--quantum correspondence  principles for the 
irregular spect rum [14] as ref lected an an lnab lh ty  o f  
quant izmg such chaot ic  mot ions  [14,34] .  

The me thod  o f  avoided crossings is essentially an 
a t t empt  to  use the  observat ion that  the quan tum 
states associated with  classical chaos,  the quan tum 
irregular spec t rum,  show several avoided crossings 
[9,28,35] rather  than degeneracies,  as a useful tech- 
tuque by  which the onset  o f  classical chaos can be de- 
tected This is done in tltree conceptua l  steps, by  (i) 
adjust ing the size o f  the uni t  o f  ac t ion  (c or  h)  to be 
sensitive to a p rede te rmined  min imum measure o f  
chaot ic  mot ions ,  0 i )  ut i l izing the fact that  ttte avoided 
crossings may  be ident i f ied by  the use o f  non-degener-  
ate pe r tu rba t ion  theory ,  where they  show up as actual  
crossings [21 ] ,  and 0n )  using a la t t ice s t ructure  in ttte 
space o f  act ion variables to t reat  b o t h  the  quant izable  
and non-quant izable  tort  on an equal footing.  

The major emphasis  tn this paper  has been in the 
e lucidat ion o f  the gross features o f  the dynamics  b y  
simple analyt ical  and graphical techniques We have 
shown earlier [11] how the irregular regions can be 
ident i f ied,  by  using pe r tu rba t ion  theory  to approxi-  
mate ly  obta in  the coordina tes  o f  the  unstable  t o n  In 
fact.  a semiclassical parametermat ion  o f  the  route  to  
chaos m such systems can be defined by  fol lowing the 
development  o f  a torus,  wi th  a set o f  well-defined ap- 
p rox imate  act ion variables, under  variat ion o f  pertur-  

ba t ion  parameter  [36].  
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Append ix  

The details o f  the Lie t ransforin [26] are well 
known and we s imply present  the  results for  the  ca- 

nonical  t ransformat ions  

F ( { , n , - -  X)  = ~ - [,--,~'(~f" ~ + ,~/,.-,~')" ~ + ,--,~(~_" " +'~-~/00~)1"_ _" 

6 2 + [ ( 0 0 2 -  ~ ~ 3 9 2 9 
" -  ~- 4~) _ coi-tco I -- _ 

+ co i (~ ; i  + r~ i l co i ' ) (~5  - + r~ / co~ ) ]  

- OeX/4~i ) (~ i  + ni/~oi)@~_ + nsl~_) 

(15),2/1 "~ ~ , .  ~.~ - 6co]')(/~]" + r ) T l c o i ) -  + O(e 4. ;k4). (A.1)  

Transforming to a c t i o n - a n g l e  ~,ariables, one ob ta ins  

K ( / :  ~. ,-'k) = ( 2 ~ ) - 1 ( ] 1  ¢~o 1 + 1 2 6 o 2 )  

e -  ~ 9 -~ -} -~ + [ (~]  
_ - ~ c o ~ 1 8 ) I ~ 1 = - c o ~ _  

3 e X l l l  2 
+ 6Oll 1 I2]n2co2] 

4 n -  co~ 0 0  2 

15 X-I~I~ 
÷ O ( e  4 . x 4 )  . 

- -  1"-6 "~ 4 ( A . 2 )  
w-co l 

Final ly .  imposing the lat t ice s t ructure  (wi th  the  uni t  
o f  acuonl2 : r  set equal to c) one gets 

E(n, Z; e, A) 

= ( n l  + X l  + 1/2)001c + (n2 +Y2 + 1/2)002c 

- - - - T - ~ ,  ( n ,  + '(2 + 1/2) 2c2 
+ -W--W-~, -q_ 4 ~ f l  - 

+ [  2e 2 .3~X ] 
¢..OlC02(00~ _ 4c02) w~002j 0Zl +X1 + 112) 

X (n 2 + X2 + 112) c2 --  ( lSX2]4co] )0Z l  + X1 + 1]2) 2c2 

+ 0 (e 4. x4) .  (A.3) 

whmh gives the "classical elgenvalue'" for any  set o f  
act ions as a funcnon  o f  the parameters .  The  Maslov 
indices, oq .  cx 2 for  this case are bo th  equal  to  2. 

The per tu rba t ion  expressions (A. 1 ) - ( A . 3 )  are vahd 
as long as u ~ l / ~  2 -~ I or  2 wi th in  O(e) .  and in the  
e x a m p l e s  t r e a t e d  in  s e c t i o n  3 ,  th in  r e q u i r e m e n t  ~s sar is -  

fled. It may  be no ted  that  second-order  quan tum-  

mechanical  pe r tu rba t ion  theor3 also yields  the  above  
expression to  within a cons tant  te rm.  - -3X-]16~5(o.~i  -) 
- -  4005). This cor rec t ion  amounts  to  less than 0.1% at  
the  energies o f  the highest b o u n d  levels 
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