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CHAOTIC MOTIONS IN VIBRATING MOLECULES: THE GENERALIZED HENON-HEILES MODEL
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The method of avoided crossings is applicd to a simple molecular model. the generahized Henon—Heiles svstem of cou-
pled osallators The ann here 1s to determine the onset of wide-spread chaotic motions The meihed is used 1o locate, ina
simple manner, the resonances that lead to chaotic motions for different choices of parameters wherein the frequencies of
the unperturbed oscillators are in the ratio 3 - 4 and 7 . 13. The accuracy of the prediction is verified against numerncal cal-

culations of classical trajectories

1. Introduction

In recent years there has been considerable interest
in the study of classically non-integrable dynamical
systems. This has relevance to a variety of areas of
research in physics and chemistry [1—3];1n particular
the intramolecular dynamics of vibrationally excited
molecules 1s aften cast in the form of a problem in
classical, non-linear dynamics A major concern has
been understanding the nature of mtramolecular
energy transfer in classical models of molecules. Here
1115 important to characterize the different kinds of
motion that can occur [4—6]: regular or quast-penod-
1c, and wuregular or chaotic For an N-degree-of-freedom
mtegrable, conservative system, the motion is con-
fined to N-dimensional ton in the phase space [4].
Upon add:tion of a non-integrable perturbation cha-
otic motions can occur as well; the extent. or measure,
aof this latier type of motion 1s related to the relative
size of the perturbation. The KAM theorem [4—6]
which deals with this general problem, and numerous
applications have been extensively reviewed recently
{7-91.

This paper is concerned with the behaviour of
“molecular’ systems with N =2 degrees of freedom.
The main objective here is in the nature of an ab
initio predicuon of when the character of the overall
motion changes from being largely regular to a mix-
rure of regular and chaotic moetions — the so-called
chaotic transition. The hamiltonian studied here has

0301-0104/83/0000—0000/$ 03.00 © 1983 North-Holland

two parameters, and 1s a generalization of the Hénon—
Heiles system [10].

H= %(p% +p% + w-’l-q% + w%q%) - eqlqg - Nl% . (D

where the p, and g; refer 10 the mementa and coordi-
nates of the two degrees of freedom.7= 1. 2, and the
oy are the respective frequencies of the oscillators
The perturbation parameiers are € and A

A technigue of detecting (by inference) the eais-
tence of chactic motions has been proposed racanily
111} for such coupled oscillator sysiems This
“method of avoided crossings™. which 1s based on
classical perturbation theory. has previcusly been
successfully applied 10 iwo-degree-of-freedom sy stems
with a single perturbation term: here 1t 1s applied to
the hamiltoman (1).

Model sy stems, such as the one above have found
much application ma chemistry [3]. being simple.
prototvpical molecules (with &V = 2_ this is the collin-
ear tnatom). By varying the parameters w,. e and A.
one can mimic different molecular situations In par-
1icular, thas system has been quanuzed by a variety of
semiclassical methods [12.13]. to examne alternaie,
more traciable means of studying the quantum me-
chanics of molecules. When the classical motion is
regular, well-known correspondence principles relate
features of the classical mounon to these of quantum-
mechanical stationary states — this forms the so-called
regular spectrum [1.4]. The absence of such a principle
for classically wregular motions and quantum states
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has resulted in the semiclassical hmit of such levels,
the irregular spectirum {14], being rather less well
understood. In addition, the study of classically cha-
olic motions has pertinence to intramolecular energy
randomization [3,15]. It is generally believed that
statistical theonies apply when the classically irregular
motions predominate.

In studies in non-linear dynainics, different criteria
have been used [10,16,17] to determine whether the
motion is regular or chaotic, and several methoeds [3,
18] have been proposed to predict the onset of chaotic
metions. It is perhaps worth observing that in non-
integrable systems, irregular regions exisi at all ener-
gies, and most criteria for judging the nature of the
motion depend on the exient of chaos. When the 1r-
regular regions are extremely narrow. these will not be
readily apparent in numerncal calcuiations that exam-
ine, say, the Poincaré surface of section [10] or the
rate of separation of nearby trajectories [16] Thus
the notion of a chaotic transition is poorly defined
when dissociated from a sense of the extent of irregu-
lar behaviour. In this paper, we confine our interest to
when tlus measure 1s sufficiently larpe ¥ 10 be detected
by any simple cntencon

The vibrational hammltonians of systems of chemical
nterest are typically extensions of eq. (). Thusit is
necessary 1o explore more fully ab imitio methods of
predicting chaos 1n such systems. This paper is a step
m that direction The method of avoided crossings.
which 1s discussed in section 2, being far from a
“black-box™ technique, as such calls for judicious ap-
plication. The instances where care must be taken,
and additional caveats are also discussed n section 2.
Section 3 deals with the predictions of the method,
and the verification of the existence and onset of cha-
otic motions for choces of various parameters A dis-
cussion and summary follows in section 4

2. Theory

The hamiltoman considered here 15 given by eq.(1)

! The practical considerations involved here usaally make 1t
difficult to observe chaotic motions by the Pomncaré sur-
face of section or by ather methods if the measure of the
wregular regrons as less than 0 05-0.1. Hence the term
“sufficiently large™ as used 1n this paper will denote this
approximate range.

and has as the unperturbed part.
Hy =307 + wlg]) +1(p3 + w3a3) . )

This is integrable, and action—angle variables [5] can
be defined:

L= (n)w)(pf + wia?).

8, =tan"1(—pjuwg), i=1.2. 3
Thus
Ho(p.q) = Ho() = 2m)~ 1l ooy +1305) G

Consequenily, the motion of Hjj occurs on a 2-torus
when o /o5 15 an wrational fraction. and consists of
periodic orbits when this ratio is rational. The pertur-
bation terms are

H2=—2\.q:i3 -

The hamiltonian /* = ffy + H) is the generahzed
Barbanis (GB) system [19], and H=Hy + Hy + H, is
the generalized Hénon—Heiles (GHH) system. For a

a small number of special values of the ratios wj [w
and efA, the system is actually integrable [20]; in the
general case. however, no global canomeal transforma-
tion exists which allows for an expression of H as a
function of action variables alone. Specifically, for any
non-zero €, H' is always non-integrable. In this situa-
tion. the KAM theorem apphes- for sufficiently small
perturbations, most of the tori will still be preserved
although 1n distorted form. Such systems have been
termed quasi-integrable, Non-toroidal, i.e. chaotic mo-
tion 1s also possible, and the objective 15 to determine
when such motions have appreciable measure. This is
accomplished by the following procedure.

The method of avorded crossings [11]. Although
this method has been presented earlier, it is worthwhile
to recall the salient features.

(i) The hamiltonian H{(p. g; €, A) is transformed to
a Birkhoff normal form in new canonical variables
g.n F(E.n. ¢, 7). Fis an integrable approximation to
some low order in the perturbation parameters, €, A.

A further canonical transformation of this nermal form
to action—angle variables I, @, yields an approximation
to H n terms of action variables alone, F(&.%: €,2)

- K(I; €,\). Since X and F are integrable hamiltonians,
fixing a set of actions J defines a torus in the motion
of F. Viewing ff as arising frfom a non-integrable per-
wrbation of F, by the KAM theory,some of these tori

3
HI = _EqIQE ]
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will persist, and some will be destroyed. The former
are denoted stable tori, and thus what 15 needed is a
way to decide which tori wall survive.

The stability cniterion for tori 1s constructed by
analogy with the quantum-mechanical case. With a
singie parameter, the genenc behaviour of a quantum
system is the absence of eigenvalue degeneracy [3].
Thus, in a graph of eigenvalue versus parameter vara-
tion. one observes an “avoided” crossing The use of
non-degenerate perturbation theory [21], on the
other hand, gives rise to crossing at approximately the
same values (of energy and parameter) when an
avoided crossing occurs in the full system. Thus a
crossing in the perturbation appreximation te the
system is viewed as the signature of an avoided cros-
sing in the eigenvalue spectrum of the actual system.
(Exceptions to this are discussed 1n detail at the end
of this section.)

Several avoided crossings within a small range (of
energy. parameter) were mterpreted [22] as giving nise
10 a quantum chaotic state. In the neighbourhood of
a crossing, off-diagonal coupling extensively mixes
the wavefunctions, so that :1f enough states are involved
in a crossing. i.e. a muinple avoided crossing, the ex-
pectation value of a given dynamical quantity in the
quantum chaotic state might approxunate the classical
microcanonical average at that energy.

By the standard quantum—semiclassical correspon-
dence prnciple [14], an invaniant torus s idenufied
as the analogue of a stationary wavefunction There-
fore, the semiclassical interpretation of the mixing
that occurs at a multiple avoided crossing is essentially
a statement of toroidal instability for the tori in-
volved ¥. The invariant tari that correspond to quan-
tum stationary states are those that can be quantized
by the EBKM rules [14,24]. those for which

fp'dq-‘-(nl+a'/4)h, i=1,2. (3)
C

i

Here C; denotes a topologically distinct path. @, is the
Maslov index, 2 Planck’s constant and the #, are in-
tegers.

* Iy 1sas if an orbir which 1s ongmally confined to the portion
of the energy shell occupied by one torus, )s able 10 wander
in the regions occupied by other ror. and this *‘superpos:-
tion™ of different mouons gives an apparently random be-
haviour Seee g fig 9nref [23]).

(1) This criterion for torus instabihty 15 extended
to all tori by mvoking a lattice structure in the space
of actions (with some chosen unit of action). thereby
selecting for further exanunation, sets of actions with
integer separation. The classical eigenvalues for this
set of actions are examned as a function of the pertur-
bation parameter(s). The term eigenvalue 15 used in
analogy with semiclassical mechanics. and the set of
actions as chosen here is arbatrary. save for the Iatuce
structure.

{n+afd+yl-afd<y<ajdnezV}.

By varying x. one searches for the occurrence of
multiple crossings in a small neighbourhood of param-
eter values, around the particular value of interest.
The unit of action is chosen (see below) 10 be small
enough 1o detect the effect of the periurbazon. From
this examination. one may determine the onset of cha-
otic motions as the Iowest energy at which multiple
{and overlapping) avoided crossings occur. Usually
this happens for X = —afl.

In purely classical terins. the above method s mere-
ly a graphic procedure for derermining respnant peri-
odic orbiis and their multiple overlaps [5.11.25]. The
imposed lattice structure, as a gnd of actions. ensures
that at everyv avoided crossing. there is a zero-frequency
and hence a resonant periodic orbii. and by using the
appropnaie scale for the unit of action. the overlapping
of these resonances 1s taken mzio account

In an earbier publication [11]. this method was ap-
plied to the cases of cubic and quaruc non-lineanzies
i coupled oseulator systems with a single parturbation
term. For the GHH hamilionian. the classical perturba-
uon method of the Lie transform [26] is apphed 10
obtain the F and K poly nomals [see (3)]. these are
sven in the appendix.

A point that needs to be discussed here 1s the role
of the unn of acuon 1 relanton to the perturbation
parameters € and A. The present approach is a semi-
classical one. in the sense that classical and quantal
conceptual methods are mixed. We have remarked
earher that in addution to locating avoided crossings,
one must also estimate their width to determine the
extent of overlap — it 1s the muluple overlapping of
avoided crossings that leads 10 chaos [11].

In a discussion of the quantal irregular spectrum.
Berry {27] has distinguished. for fixed perturbation
parameier values (€. A). three serclassical limits de-
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pending on the relative size of Planck’s constant A.
When £ 1s relatively large (regime 1), the volume of
phase space assoctated with a quantum state can be
lJarger than the chaotic regions. Hence almost every
semicldssical state would be insensitive to the under-
lying dynamics — almost any perturbation theory
would work. In terms of the present analysis, faw
states would be involved in avoided crossings If A is
very small (regime 3), then the volume of phase space
associated with each guantum state would be propor-
tionately smaller, and almost every quantun state
would be sensitive to the classical dynamics. Thus.
there would be several avoided crossings, but neither
would the degree of avoidance be large, or would the
overlap between the crossings be significant, For inter-
med:ate i1 (regime 2), both regular and irregular quan-
tum: states coexist. In this regime, the unit of action is
neither so large as to have 100 few avoided crossings,
nor so small as to have too many, but nsignificant
avoided crossmngs

As the interest here is in being able to estimate the

gross features of the classical motion, when the mea-
sure of the chaotic flows becomes appreciable, it 15
regime 2 that 1s of interest. The unit of action is to be
chosen so that the relatve volume associaled with a
given state will be sensitive to an appreciable amount
of chaotic motion From earlier studies of some sys-
teins, there is an indication of the relative size of &
that 1s appropnate. For the GHH with w; = w, =1,

= —¢gf3, e=—(80)-1/2 and h/27 =1, it was found
that avoided crossings were sparse [21,28]. The sys-
tem, which dissociates at an energy of 13.33 supported
only 100 bound levels (the effective number is even
lower because symmetry separates these into non-
nteracting sets of =63 and 35 states). This corre-
sponds to the semiclassical regime 1;with#t = 0.62
(or equivalently, with € = —0.088), the systen: has
iwice the number of bound states, and there are sever-
al avoided crossings §21], indicating that for this value
of i, €1s consistent with regime 2 discussed above. In
the examples studied in this paper, the parameters e, A
and the unit of action have been adjusted such that the
average density of states conforms more closely with
the latter system.

At this stage 1t 15 appropnate to identify some of
he shortcomings of the method. First, this technique
s based on a perturbation scheme, and it can be relied
wpon only if all parameters are of the appropriate rela-

twve size. This is usually true in molecular systemns,
when a normal-mode picture 1s a good starting point.
Secondly, and more importantly, there are several
examples of systems wherein bath real crossings
{actual degeneracy) and avoided crossings can occur
in the quantum-mechanical spectrum as a parameter

is varied *_ while the classical motion is regular On
the basis of perturbation theory aione. it is impossible
to distingwssh between the avoided crossings of integ-
rable and non-integrable systems; thus the inferences
drawn above [see (i)] can be guite erroneous. It seems
simplest at this stage to exclude integrable systems
from such analysis. Recent developments [30] have
made 1t possible to determine whether a system Is in-
tegrable by using the Painlevé property. When apphed
to the GHH. this indicates that the system 1s mtegrable
for the cases [20] Me =2 and (w; [y, Me) = (1,1/3)
and (4, 16/3). The method of avoided crossings cannot
be applied in these instances. In addition, the pseudo-
integrable case {29] (where the motion is regular. but
not on a torus) should be excluded as well, although
for systems such as (1) with smooth potentials, this
excepiional behaviour is unlikely to occur. The require-
ment of an external check to exclude certain types of
systems is a deficiency of the method, it awaits fur-
ther research 1o device correspondingly satisfaciory
mternal checks.

3. Applications

The GHH system is best treated as a further per-
wurbed GB system; one reason being that the term 7,
is not capable of introducing any real degeneracies in
the eigenvalue spectrum. Thus any avoided crossings
in A" will remain avoided crossings in A. By using the
expressions for the canonical transformations given in
the appendix, the energy versus parameter curves can
be obtaned in a straightforward manner. We first con-
sider Hy) as the basic hamiltonian out of which the
B arises; thus e is varied around the value of interest
with A =0. This gves information regarding the

* See, e g. ref. [29] The system studied here, a billiard whose
boundary is a polygon with angles a rational multiple of
is somewhat special- there exist n independent constants of
the motion, which occurs on a muluply handed sphere, nor
a torus Richens and Berzy have termed this type of regular
behaviour pseudo-integrability
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Fir. 1 Constant-action curves for the GHH system with uf
=16.w2=09.ande=008. %= —1/2.¢=1.asa function
of the perturbation parameter A The curves are indexed by
integers (1), rip) [see eq (A 3)]

avoided crossings in the GB system. (Note that there
can be no real crossings in any GB system.) The further
avorded crossings induced by then varying A yields the
required mformation 1n the corresponding GHH sys-
tem. This analysis is performed for two different
choices of the parameters.

In the first, the frequencies and perturbation pa-
rameters are: w3 = 1.6, w3 =09, e= 008, A= 0.01.
There have been some previous studies {11,311 of the
system with A = 0. Trajectory calculations by Sorbie
and Handy [31] gave evidence for the existence of
appreciable chaotze motions at an energy of ~19 units,
and the system dissociates at 25.3125 umits The pres-
ent method, when applied to this GB system showed
a lowest set of avoided crossings at around the same
energy [11].

The eigenvalue curves * under further variation of
A (with fixed € = 0 08) are shown in fig 1. The system
dissociates at 23.53 units for A= 0.01, the lowest
avoided crossings again occur at around 18.9 units.

Varying ¢ by a small wmount between ¢ = 0.9 and

¢ = 1. does not change tius lowest energy of multiple
avoided crossings substantially: further, the same set
of action curves ? 1s involved mn the avoided crossings
in both the GB and the corresponding GHH system.
The direct nmplications are that (1) in the GHH system.
the onset of widespread chaos occurs 4t an energy only
marginally lower than 1n the corresponding GB sysiemn,
and (2) in both systems, the route towards large-scale
chaos is very simmlar and this chaos occurs in the same
kind of region of phase space 1n either system.

These predictions can be checked by compuung
trajectones for the latter system. A simiple visual crite-
rion for determining whether the motion is regular or
not 1s the Poincaré surface of section Using several
trajectonies on the energy shell, one can exanune the
overal] structure of the phase space. Below £ (the
total energy) = 18 unus. 12 is difficult to locate any
chaotic orbiis, for the reasons outhined n section 1.
Mast tori are preserved as in the KAM theory. A1 £
= 19 units. on the other hand. the fraction of chaotic
trajectories 1s measurable which indicates that the
chaotic transition does indeed occur around thsis
energy. The surfaces of section at the two energies
are shown in fig 2 One can see that the chaotic regr-
ons in fig 2b are indeed analogous to the regions of
phase space thai first show widespread irregular be-
haviour in the GB system with A =0 (see fig. 2 1 ref.
[31D.

The second system treated here has parameters:
w? =049, w3 = 1.69, €= 0.1, A = 0.01. The lowest
few eigenvalues for this sy stam have been obtained
from trajectory [12] and perturbarion [13] methods.
The interast in these particular parameter values is due
to observations by Huichinson and Wyat: [32] that
the Wigner functuon [27] for the quantum states in
this systen1 shows regular quantal behaviour for all
bound states, and unhke most systems that have been
studied, classical chaotic motions occur only art very
high energies relanve 1o dissociation. and even here.

a substantial fraction of the 1om still survives. It may

* The symmetry of The perturbanion term K, separates the

bound states into two mutually non-interacting sets,
{ny.7m3in3=1.3,5,___odd integers} and {n;.n510, = 0,
2 4, ... even integers } and 11 suffices to study the laiter set
of states.

* In fig 2 of ref [11] the labels (1. n3) for the curves marked
{12.4) and (8.10) were inadvertently interchanged.
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Fig 2 Surface of section of the GHH system for which the
action curves are shown in fig. 1, at £ = 18 units (a) and for
E =19 umts (b)

Fig 3 (a) Constant-action curves for the GB system with m'f
=0.49, w} = 1.69, L =-1/2, ¢ = 1, as a function of the per- >
turbation parameter €. (b) With e = 0.1, the further develop-

ment of the action curves under the effect of the second pa-

rameter, A. To give the appropriate density of states, the unit
of action ¢ has been reduced to 0 85.
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Fig 4. Suzfaces of section for the GB system (action curves are given in fig. 3a) at (a) £ = 15 unitsand (b) £ = 15.5 umis
be noted that the system 15 not integrable, and the pa- action curves for y = —~1/2.¢ = 1 are shown 1n tig 3a,
rameter ratios are not close to the special values when in the energy range 14 << £ < 18. What can be noticed

the GHH has the Painlevé property.

First consider the GB system. The dissociation ener-
gy is 17.49. The zeroth-order frequencies are 1n the
ratio 7 - 13, which is a high-order resonance. The

is the structure of the avoided crossings around e =0.1.
they occur in well-separated bunches corresponding to
1An, | - {Anr,]1=7: 4. Due to the large differances in
the quantum numbers of the interacting states, one
E=100

{a) E=105 {b)

20

20

& o0

-2 0

Fig 5 Surfaces of section for the GHH system (action curves are shown in fig. 3b) at (a) £ = 10 units and (b) £ = 10.5 unirs.
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expects that these do not have substantial width. The
lowest set of crossings centered at e= 0.1 isat E =~
15 23, and the prediction thercfore is that chaotic
motons will become appreciable only around that
enerpy.

When A is now increased from 0 to 0.01, the disso-
clatian energy is lowered to 11.46 units. To conform
1o the typical density of states in the previous systems,
the appropnate value of ¢ is somewh~t smaller, ¢ =
0.85. With this value of the action unit, the energy
curves for €= 0.1 are presented in fiz 3b in the range
9 < E <12 Muiltiple avoided crossings occur around
£ =10 25 and here the eapectation is that appreciable
chaos sets in only at this high (relative to dissociation)
energy. Interestingly, the curvesfor X =0,c=1, ie.
the quantal states examined in ref [32] show ro mul-

ir . ] Aw
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Fig 6 Relative measure of regular motions {the VAK density)
for the systems studied here, 8— —m: w} = 1.6, w3 =09, e=
0.0B,A=001; A—4 and e——w are for w} = 049, wl =169,
e=0.10, A= 0 and A = 0 01 respectively. For comparison, the
corresponding information for e3; = wa=1,e= -1, A=1/3
(taken from ref {101) is also shown, ...

tiple avoided crossings: this is a good example of the
regime 1 behaviour discussed in section 2.

Surfaces of section for the GB and GHH systems
have been computed and are shown in figs 4 and 5.
For the GB system, the surface of sectionat E=15
displays regular behaviour, while at E= 15 5, there is
evidence of chaotic motion. For the GHH system, the
corresponding surfaces at £ = 10 and E = 10.5 indicate
the onset of chaos around the latter energy.

As i other similar systems, the extent of classical
chaos increases with energy. One can obtain the mea-
sure of regular motions from the surfaces of section.
This information is summarized in fig. 6, where the
fraction of regular regions, the VAK density {6]. for
the systems examined here is graphed versus the
scaled energy, £/E 4 ccqciation-

4. Discussion

The results presented here, and previous work [11]
combine to show the utility of the method of avoided
crossings in detecting classical chaos Except for the
case of the specific resonances, where rhe simple per-
turbation theory breaks down, this method can be
applied to a variety of systems; this at least partially
bypasses the need for computning large numbers of
trajectones. Additional important exceptions are in-
tegrable systems, where the method fails entirely, 1t
is to be emphasized that while the eigenvalue spectrum
of non-integrable systems show avoided crossings, the
reverse of tlus statement 1s not, in general, true. Ar-
bitrary integrable systems with any eigenvalue distri-
bution whatsoever can be constructed (specifically,
for example, the integrable hamiltonian £ given in
section 2 will have a spectrum quite similar to that of
H). Thus we exclude these cases. This can be done
most easily by using the recently developed criterion
of the Painlevé property to identify the special values
of the parameters when the system becomes integ-
rable [20,30]. At present there is no reasonable way
in which the avoided crossings method can itself be
used to distinguish between integrable and non-inte-
grable cases

It is greatly desirable to have available a simple reli-
able method for predicting the occurrence of wide-
spread chaos in molecular systems. On the one hand,
it is necessary to know the regime of applicability of
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statistical theories which implicitly assume the ergodic
hypothesis [33]. On the other hand, the lack of simple
classical—quantum correspondence principles for the
wrregular spectrum [14] 1s reflected 1 an mnabihty of
quantizing such chaotic motions [14.34].

The method of avoided crossings is essentially an
attempt 10 use the observation that the quantum
states associated with classical chaos, the quantum
wrregular spectrum, show several avoided crossings
[9,28.35] rather than degeneracies, as a useful tech-
mque by which the onset of classical chaos can be de-
tected This 1s done in three conceptual steps, by (i)
adjusting the size of the unit of action (¢ or i) to be
sensitive to a predetermined minimum measure of
chaotic motions, (1) utilizing the fact that the avoided
crossings may be identified by the use of non-degener-
ate perturbation theory, where they show up as actual
crossings [21], and (in) using a lattice structure in the
space of action variables to treat both the quantizable
and non-quantizable tori on an equal footing.

The major emphasis in this paper has been in the
elucidation of the gross features of the dynamacs by
sunple analytical and graphical technigues We have
shown earlier [11} how the irrepular regions can be
wdentified. by using perturbation theory to approxi-
mately obiain the coordinates of the unstable ton In
fact. a semiclassical parametenzation of the route to
chaos 1n such systems can be defined by following the
development of a torus, with a set of well-defined ap-
proaimate action vanables, under vanation of pertur-
bation parameter [36].
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Appendix
The details of the Lie transform [26] are well

known and we simply present the results for the ca-
nonical transformations

g e N = ool + mileo]) + 3] + o]

-
€ a 2
o © (w38 R+ ndiewd)
2ep(wy — 4w3)

+wi(E + n}lwDE + n3lwd)]
— GeMawD)(E? + 03 w)(ES + n3/w3)
— (1502/16D)(£2 + n} /D) + O ). (A D)

Transforming 10 acunon—angle variables, one obtains

K(I:e.0) = 2m)~1(J | o, + 1509)

2
€ 2
+—~—-h[(w — 3w IS 1 by m
2((.&* - 4(.0.,) 2 18131 2
, 3elly/,
Tl himtw,y) - —m
?\2]217 47r-w;w2
15 113
~ 16 E— O(ct. ). {A.2)
1

Finally. imposing the lattice siructure (with the unit
of actionf2= set =qual to ¢) one gets

E{n. x5, M)
=0 x; 1 2)wye a5+ 1/ Dwse

75"(&27 - Jw /8)

(lh Ty, t 117)

wiwi(w]- - 4:..32

2e? 3eA
+|: 3 = — — ]("1'1')(1"'1/3)
wlwl(wi —4&:5) miml

X (s + x5 + 12)e” — (1507 /100D) (1 + 1 +1/2)22

+0(e*. A | (A.3)

wlich gives the “classical eigenvalue™ for any set of
actions as a funcuon of the parameters. The Maslov
indices. o.. oy for this case are both equal to 2.

The perturbation expressions (A.1)—(A.3) are valid
as long as w4 /w, = 1 or 2 withun O(g). and in the
examples treated in secnion 3, this requirement 1s satis-
fied. It may be noted that second-order quantum-
mechanical perturbation theory also yields the above
expression 1o within a constant term, —32%/ 16(.37(0)1
— 4(.0')) This correction amounts 1o less than 0.1% a1
the energies of the highest bound levels
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