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The classical mechanical treatment of non-reactive scattering processes is cast into a convenient forozam for 
describing the changes in the internal linear momentum affected by a collision. ‘l%e dependence of these changes on the 
initial internal linear mcmenmm and coordinate is shown to be wezk. Combing this result with the clwical viriat 
theorem leads to a classical scaling theory for internal energy changes. In its simplest form, this theory explicitly exhibits 
the dependence of the internal energy transfer on four factors: (1) the initial internal energy; (2) the initiai internal 
coordinate: (3) the bound state potential; and (4) the average momentum transfer. At a given initial kinetic energy, these 
four quantities suffice to characterize the systematic variation of the internal energy transfer with initial internal energy 
and coordinate. The combination of the classical scaling theory with the quasiclassical histogram quantization method is 
determination of all other transition probabilities P,_,_A. A= 1.2. .__. n. This includes classically forbidden processes for 
which the scaling theory yields an exact value of zero. 

1. Introduction 

Although quantum mechanics provides a 
correct description of collision processes involv- 
ing atomic and molecular systems, implemen- 
tation of the quantum scattering formalism is 
extremely difficult for systems with more than a 
few internal states. Development of approxima- 
tion methods such as exponential distorted wave 
and dimensionality reduction schemes has 
extended the range of quantal dynamics [l, 21. 
Of course, the most well-known approximation 
involves replacing the quantum mechanical 
description with the classical mechanical one. 
Such an approach is asymptotically correct in 
the limit of large quantum numbers, and has 
been implemented for systems much too large 
for study by quantal methods [3]. 

Classical trajectory techniques do suffer from 
serious difficuhies. One of major interest for 
chemical systems is the extraction of state-to- 
state information from continuous Classical 
variables_ Various direct approaches have been 

developed, including the histogram binning 
method [3-51, a geometrical or continuous 
mapping technique [6] and classical S-matrix 
theory [7, S]. Indirect approaches have utilized 
classical energy transfer moments combined 
with either an inversion procedure [4,9] or a 
correspondence between the classical and 
quantum forced oscillator [lo]. AI1 of these 
methods have been applied to a variety of 
systems and the results are often quite reason- 
able. 

Another more subtle difficulty involves the 
interrelationship among classical quantities such 
as ener,7 transfer moments and state-to-state 
transition probabilities. Au methods which util- 
ize the moments always incorporate additional 
assumptions about the appropriate relationship 
(e.g. an information theoretic form). A few 
simple questions can be posed to further illus- 
trate this problem: (1) Do classical energy loss 
moments directly imply a certain set of state-to- 
state transition probabilities within a particular 
quantization scheme, and vice versa? (2) Are 
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all the state-to-state transition probabilities 
essentially independent (except for the restric- 
tion of probability conservation)? Such ques- 
tions probe our understanding of the systematics 
of classical dynamics, and its relationship to 
quantum mechanics. Tie answers are of both 
fundamental ar,d practical interest. 

In this article, we present the initial 
development of an approximate fully classical 
scafing theory for internal molecular variables. 
This theory provides a general relationship for 
changes in the internal linear momentum and 
internal energy, resulting from a bimolecular 
non-reactive collision, in terms of the isolated 
molecules’ properties and the impulse in the 
collision. Utilizing this theory, one can investi- 
gate some of the previously mentioned prob- 
lems. As an initial illustration, the internal 
energy scaling relationship is combined with the 
histogram quantization method to yield the 
quantum number scaling theory for transition 
probabiiities which is appropriate to this quasi- 
classical theory. Testing against exact histogram 
transition probabilities shows the scaling theory 
to describe accurately the quantum number 
variation. In another article, we derive the scal- 
ing for energy loss moments and show how 
these can provide directly all the state-to-state 
transition probabilities within various classical 
quantization procedures. 

This paper is divided into four parts. Section 
2 consists of an exposition of classical dynamics 
within the perturbative and sudden limitsz; 
these dynamical approximations [l] are used to 
investigate the appropriate scaling relationships 
for linear momentum and internal energy 
changes. General expressions are given in 
section 3 for the scaling of vibrational transition 
probabilities P, _,,. within the histogram quan- 
tization procedure. Section 3 also contains 
examples for the harmonic and Morse oscillator 
cases. A discussion of quantum versus classical 
histogram relative quantities and a brief 
conclusion follow in section 4. 

t Thus perturbative limit in quaarum mechanics also leads to 
a scaling relationship [ll] identical to that previously 
derived wirhin the energy correct sudden salin3 theory 
[lg. 

2. classid scattering theory 

We consider a system described by one 
internal coordinate and momentum, (r, p) and 
center-of-momentum translational coordinates 
and momenta (R, P) = (RI, Rz, R;, PI, Pz, P;). 
This separation of the internal and relative 
degrees of freedom is assumed to hold 
throughout the collision, which restricts our 
treatment to non-reactive processes. The 
hamiltonian is defined by 

H=(2cr)-‘P’+V(R,r)+h(p,r), (2.1) 

where ,LL is the collision reduced mass and 
V(R, r) is the intermolecular potential which 
vanishes as R -IRI approaches infinity. The 
internal molecular hamiltonian is given as 

h(p, r) =(2m>_‘p’+o(r), 

where m is the internal reduced mass and u(r) 
is the potential for the (bound) mo!ecule. We 
emphasize that more internal degrees of 
freedom can be included provided that h 
remains separable in r and p. Further discussion 
of this point occurs at the end of section 2.2. 

The dynamical evolution of the collision is 
governed by Hamiiton’s equations which 
become 

p = _awc r) 
I 

aRI ’ 
Iii = Pi//.L, i = 1,273, (2.3a) 

~ = _aub.) aV(R r) 
P-P 

ar ar ’ 
i=p/m. (2.3b) 

Specification of the initial conditions at a total 
energy, E, as f + -co: 

r=ro. p=po, (2.34 

/RI = Iarge, R = R,, (2.3d) 

R,,xPO=L,,, PO = &.4E-h (PO, h)lI”‘, 
(2.3e) 

suffices to yield the fkal values which are 
evaluated when IRI is large once again. 
Specifically, the internal momentum change is 
generally a function of all the initial conditions, 

~0) = PO(~) +F(&, Lo. ra, PO, f), (2.4) 
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where pa(r) is the time-dependent internal 
momentum in the absence of the collision and F 
is an unknown function. Eqs. (2_3a)-(2.3e) can 
be integrated numerically once v(r), m, p and 
V(R, r) are specified and F can be determined. 
We do not take this approach since the varia- 
tion of the internal variable changes with initial 
values po and r. is of main interest. There- 
fore, we study the dynamical solutions within 
the context of two standard but generally 
comp!ementary approximations, namely those 
defined by the sudden and perturbation 
assumptions. Generalizations beyond these 
limits: are discussed in section 2.3. 

2.1. Sudden approximation 

The fundamental assumption is that one (or 
more) of the internal coordinates remains 
unchanged during the course of the collision. 
This occurs when the time duration of the 
collision is short compared to the characteristic 
period of the motion of the appropriate internal 
coordinate_ Suppress all reference to other 
internal degrees of freedom and denote the 
sudden coordinate by r. Eqs (2.3a) and (2.3b) 
then apply in the form, 

pi = - ave-2, ro) 
dRi ’ 

Ri = Pi/p 

and 

p= avm r) I i=o. 
ar r3rtl 

(Ma) 

The factor &o(r)/& is dropped for consistency 
in eq. (2.5b), since in the absence of a collision 
i = 0 would imply j = O_ The critical feature of 
the approximation involves the separation of i 
and p; the time-dependence of p is trivially 
determined from eq. (ZSb) when i = 0 but it 
should not be assumed that p = 0. This separa- 
tion is analogous to the quantum mechanical 
sudden approximation where the state-to-state 
S-matrix elements are generated by taking 
matrix elements of a fixed-coordinate represen- 
tation sudden S-mat& [lb, 12, 131. 

+ i See ref. [17] and the note added in proof. 

Eq. (Mb) can be solved formally to yield 
I’ 

PO? 'PO- I aVU%r) de 

ar I r=ru ” (2.6) 
--m 

where po is the initial internal momentum. From 
eqs. (2.3) and (2.5a), the translational coor- 
dinate is a function of time, Pa, LO and ro. i.e. 
R =J?(t, PO, Lo, rJ_ Defining the impulse of the 
force in the r-coordinate as 

03 

f(P0, Lo, ro)=- [ -1 dt, (2.7) 
‘=‘” 

--CD 

yields a functional relationship for the change in 
the internal momentum, 

p-p0 =WO, LO, r01, 

where 

(2.8) 

p =p(r’+oo) (2.9) 

is the final internal momentum. Eq. (2.8) is the 
desired result of the form in eq. (2-4) which 
allows one to correlate changes in the internal 
momentum with variations in r3 at a given PO, 
Lo_ For example, at a Jpecified kinetic ener,7 
and impact parameter, the momentum change 
depends only upon the initial internal coor- 
dinate value. We emphasize two important 
points about eq. (3.8): 

(i) the internal momentum p. does not 
appear in f, which implies that action-angle 
variables or any new coordinates such that r’= 
g(r,p) cannot be used; and, 

(ii) the relationship cannot be used to quan- 
tize ciassical results without further manipula- 
tion, since from (i) the momentum p is a linear 
momentum variable. 

The solution of the difficuity in (ii) is presen- 
ted in section 2.3 after we first derive eq. (2.8) 
from another viewpoint. 

2.2. Perturbation approximation 

The fundamental assumption is that cne (or 
more) of the internal coordinates is only weakly 
affected by the collision_ As before we suppress 
all indication of other degrees of freedom, and 
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iet the appropriate coordinate be r. Define the 
collision-free vaIces as r(t) and p’(t). which 
satisfy the equations 

+-+ _ 
I 

f(t) =p(!)/m, (2.10) 
r=i(t, 

and let the additional time-dependences be 
included as 

r(r) = P(r) ir?(r), (2.Ila) 

p(t) =p(t)tp’(t)_ (Lllb) 

Substitution of eq. (2.11) into eq. (2.3) and use 
of eq. (2.10) yields 

p, = _a VW, r(t)) 
L al5 ’ 

Ri = Pill (2.12a) 

and 

$(i)=?$)l Jv P) a V(R, r) _-I -____ 
r=i,rj Jr r=,(r) ar I 3 

r=r<i, 

ii=pi/m_ (2.12b) 

These exact equations are simply the classical 
analog of the quantum interaction represen- 
tation. 

The perturbative assumption implies that the 
right hand sides of eqs. (2.12aj and (2.12b) can 
be evaluated at r(t) = F(t)_ The equation for ri 
becomes triviai and will be neglected in the 
following developments. The dynamics is then 
governed by the approximate equations, 

p_ = _W(R, r(t)) 
I 

JR, ’ 
ki = PJp, (2.13a) 

p’(r) = 
I 

i ,- =rcr, 
(2.130) 

Integrating eq. (2.13b) and using the fact that 
p’(r+ --CO) = 0 leads to 

I- JV(R,r) 
p(t’)=p(t’)-- - 

J i 
dr. 

ar 
(2.14) 

r=iU, 
--co 

This result is very similar to eq. (2.6; except 
that the derivative is evaluated at a time- 
dependent r = F(t). Since the amplitude and 

time-dependence of 7(t) will generally depend 
upon the initial internal energy, eqs. (2.13) and 
(2.14) must be further simplified before a 
Eunctiona! relationship like eq. (2.8) obtains. 

For the problems which we are primarily 
concerned with, namely vibrational transitions, 
the time-variation of F(t) is fast compared to 
that of R(t). (Note that this separation of time 
scales is exactly the reverse of the sudden 
approximation presented in section 2.1.) Since 
r(t) varies quickly compared to R(r), the T(t) 
dependence in eq. (2.13a) can be assumed to 
“average-out”. The translational dynamics is 
then governed by 

pi =- dV(R, 6)) k. = p.,p 

JRi ’ ’ I ’ (2.15) 

where 
7 

(P) = T-’ r(f) dr (2.16) 

0 

is the average of F(t) over a vibrational period. 
Similarly, we can evaluate the derivative in eq. 
(2.14) at r =(F) since only the change of p(r’> on 
the collision time-scale is required; in other 
words, the time-dependence of r(r) affects the 
short-time variation of p(r’) but not the long- 
time collisiona behavior. In addition, since P(r’) 
displays periodic motion, we can choose a value 
of t’= T’ sufficiently large to ensure conver- 
gence of the integral in eq. (2.14) and such that 
B(T) = pdr’+ -co) = po. Eq. (2.14) becomes 

.p -pa =f(Po, Lo, G>), (2.17) 

where f is given by eq. (2.7) with ro replaced by 
(F} and p =p(T’) is the final momentum. Eq. 
(2.17) is of the same form as eq. (2.4) with (i) 
replacing rO_ 

The functional relationship between changes 
in internal momentum and the other system 
variables is identical within either the sudden 
approximation, eq. (2.8), or the perturbation 
theory, eq. (2.17). An analogous situation holds 
in quantum mechanics where the quantum 
number scaling theory derived within the energy 
corrected sudden, EC& approximation [12] also 
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results from the distorted wave Born approxi- 
mation [ll]. In their details, the two classical 
eqs. (2.8) and (2.17) are different, since in the 
sudden approximation a constant p(t) obtains at 
large t, while in the perturbative result p(r) 

retains a time-dependence in this limit_ This 
feature is another implication of the fact that 
changes in linear momenta do not correspond 
directly to quantum state-to-state transitions_ 
We consider this problem in section 2.3. 

One feature common to both equations is the 
appearance of only a single internal variable in 
f. For a system with more internal degrees of 
freedom, the function f would depend upon all 
the other coordinates and momenta, provided 
the internal hamiltonian is separable in the 
particular r and p. 

We note that previous work along these lines 
has been presented by Marcus and co-workers 
[lS] and Cross 1161, who used eqs. (2.8) and 
(2.17) to simplify dynamical calculations. By 
contrast, the present investigation focuses on 
the derivation of the scaling properties of clas- 
sical dynamics as implied by these equations. 

2.3. Classical scaling theory 

The previous derivations apply to the change 
in internal linear momentum during the collision 
process. The internal ener,7 E, and action I 
play a more fundamental role in characterizing 
the isolated molecule, and in connecting classi- 
cal to quantum mechanics [7]_ These are related 

~~~)~-jpdr=1~2m(~-u(r)]“‘dr. (2.18) 

and knowledge of one then impiies the other. 
The classical scaling relationship for internal 
ener_q changes is derived in the fohowing 
pages. 

We consider the final interna energy 
momentum and potential (c,p(r) and U(C) 
respectively) and the corresponding initial 
values (c,,,p&) and o&)) all at the same time f. 
The starting point is the equation 

p(r) = (Zm) =[E - IJ (r)J”’ 

= (2m)“‘[c,,-4) +A(t)]“‘, (2.19) 

where 

A(r) = E -o(t) -[&cl- oo(t)]. (2.20) 

Expanding eq. (2.19) in A(r), we find to lowest 
order in A(f), 

p(t) -p&) = (2,n)*‘“A(t)/2[~o-i)O(t)]“‘_ (2.21) 

This equation can be connected to the previous 
scaling of linear momentum in eqs. (2.8) and 
(2.17) (or even the general equation (2.4)). The 
connection is not identical in both cases due to 
the different time-dependences in the sudden 
and perturbative limits, bui the resulting scahng 
theory is identical. 

In the sudden limit, o(t) and uo(t) are the 
same since the coordinate does not change. 
Evaluation of eq. (2.21) at long times and use 
of eq. (2.8) leads to 

f(P,, Lo, ro) = (2m)“’ 
E-&O 

2[&O - tJ (ro)]“z’ 
(2-22) 

In the perturbative limit, we evaluate eq. (2.21) 
at so;ne long time which is an integral number 
of periods of the initial motion. However, A(t) 
does not become simp!y E -co in this limit since 
changes in the coordinate do occur in the 
perturbation theory description. In fact, any 
change in internal energy should be distributed 
between the kinetic and potential energy terms. 
Since the internal motion is nearly free on a 
collision time scale, the classical virial theorem 
[ 141 determines the partitioning. Then, 

f(Po, Lo. (F)) = (2mY 
T-To 

2[&0 - 0 (fJj”” 
i2.23a) 

where the average internal kinetic energy is 
given by 

f = $r du (r)/dr. (2.23b) 

Eqs. (2.22) and (2-23) are similar in form, 
and correspond to different internal energy 
partitioning. For the harmonic oscillator where 
T = E/2 this reduces to a simple scale change, 
and the functional dependence of the energy 
transfer on the initial internal energy and coor- 
dinate is identical. In general this will not be the 
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case and we expect eq. (2.23) to more 
accurately describe vibrationally inelastic pro- 
cesses. For this reason, the specific analysis and 
examples will be based upon eq. (2.23). 
However, we emphasize the most important 
physica ramification of both equations is that 
the energy transfer is not independent of the 
initial internal energy. A similar statement holds 
for the change in the action. 

All the variables in eq. (2.23) pertain solely 
to the molecular system except f, which depends 
upon both translational and internal variables. 
This unknown dependence off on {f) does not 
rigorously allow for a scaling relationship to be 
derived based upon eq. (2.23). If f is weakly 
dependent on or even independent of (f), then 
a classical scaling theory results. Such an 
assumption will hold in two typical situaticns. 
First, when 2 first-order Taylor series of the 
intermolecular potential, i.e. 

3V(R, r) 
V(R, r) = V(R, r,) i (r -rJ --y- I , 

r=,-= 

is accurate, rhen f depends upon (Y) only 
through the variation of the trajectory with (i) 
in eq. (2.15). Second, when the potential is 
locally exponential around the turning point, i.e. 

V(R, P) =L2;&.R2t V(R, r) 

2: V. exp [a! (R -R3] exp (LY ‘r), 

then the trajectory is modified such that 
VU exp (cr’r) becomes the translational kinetic 
energy and f is just (Y’ times the potential. 
These two cases should adequately characterize 
vibrational transitions. 

Making the simplest assumption that f is 
independent of (F) leads to a zeroth order clas- 
sical scaling theory. After suppression of the 
translation coordinate variables in f, we find 

- - 
oiO’ = (7-o- T)/[sa- u (ra)]“‘, b (2.24) 

where the definition f (PO, to) = -(2m)“‘g”‘/2 
has been made. ‘The generalization of eq. (2.24) 
to the situation where the (P} and pO depen- 
dence is weak but non-zero is quite straight- 
forward and simply consists of replacing the left 

hand side of eq. (2.24) by the first order Taylor 
series in tF) and po, i.e. make the transformation 
g(o) +g ~“)-i(i)g(‘)+pOg(z)~ We expect that these 
generalizations will be more important than the 
inclusion of higher order factors in Tc - T in eq. 
(2.24); the results in the next section indicate 
that the quadratic factor never makes more than 
2 few percent contribution. It is clear that the 

g (i) are functions of both the translational and 
angular momenta. Most importantly, g”‘, i = 1, 
2, 3, are all constant for a specific initial kinetic 
energy and impact parameter. This fact 
combined with the sudden approximation 
derivation indicates that only deexciration pro- 
cesses should be considered - with excitations 
treated using time-reversal symmetry. (See the 
note added in proof and ref. [17] for the lifting 
of this restriction.) 

Eq. (2.24) and its generalizations are the 
central results of this article since they consti- 
tute a classical scaling relationship for the 
internal energy changes. For example, using eqs. 
(2.24) and (2.23b) and given g(O), we can 
determine alI the energy changes for every 
initial energy and coordinate. Conversely, any 
non-zero energy change in one initial 
configuration, i.e. Ed and rO, suffices to deter- 
mine g(O), and thus all other internal energy 
changes for the same kinetic energy and impact 
parameter. Furthermore, eq. (2.24) can be 
combined with any quasiclassical theory (baaed 
upon internal ener,T or action variations) in 
order to provide a quantum number scaling 
theory appropriate to :he particular theory. We 
emphasize that although eq. (2.24) will lead to 
such individual classical scaling theories, partic- 
ular theories and types of classical information 
may be less sensitive to the assumptions in the 
derivation. Thus, testing of each scaling rela- 
tionship will generally be necessary. 

An initial example of the utihty and accuracy 
of the scaling relationship in eq_ (2.24) is 
presented in the next section for the commonIy 
used histogram quantization procedure. In ano- 
ther article [17]. we show how such scaling 
relationships lead to a detailed solution to the 
extraction of state-to-state vibrational transition 
probabilities from classical energy moments. 
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3. Quasi&ssical bistc+nnm scaling 

The transition probability from an initial 
quantum state n to a final state 12’ is defined for 
each initial coordinate r0 (and implicitly for each 
direction + or - of the momentum) as [g-5] 

P,,,.(r,) = 1, E(n’- 1/2)S& ==E(n’+ l/2), 

= 0, otherwise. (3-l) 

Throughout this section we use the notation 
that E(y) is the internal ener_q for any value of 
y and E is the final classical internal energy. 
The physically meanin&l transition probability 
is simply a phase space average of P,_,.(Q) 
over the distribution of rO-values. Thus, 

r?. 

P n-n ’ =N,’ P,_,+o)W”(ro) drch (3.2) 

where the unnormalized classical position dis- 
tribution function is [lS] 

W,(rJ = [E(n) -u(riJ)]_I”, (3.3) 
and, due to the two momentum directions, 

N, =2 w, (GJ) d%. (3.4) 

rC 

Here, r, and r.= are the inner and outer cIassica1 
turning points for the quantum state n. 

The value of P,,, ,(rO) in eq. (3.2) will be 
unity only over a certain set of ranges of rO- 
values. Letting these be symbolized by [r,, rJ 
[r3, r,] ,.._, [r2,_,. rzm], we rewrite eq. (3-2) in the 
equivaient form 

rzi 

Eq. (3.5j clearIy shows that the determination 
of the number and range of the r; is “all” that is 
necessary to implement the histogram quantiza- 
tion procedure_ These are provided by the clas- 
sical internal ener_q scaling theory in eqs. 
(2.23b) and (2.24) as explained in the following 
sections. 

To simplify the discussion, we make the 
following transformation of variables 

D(Q,) =E(n) sin’ 0, (3.6) 

which ensures that the range of contributing 
values is symmetric through the B = 0 minimum. 
Substitution of eq. (3.6) into eq. (2.21) yields 

g to) =[~(E(n))-~(Ej]/E(n)“‘cose, (3.72) 

where the dependence of 7 on the total internal 
energy is shown explicitly. Eq. (3.7a) can be 
solved for T’(E) to give 

T(E) = T(E(n))-g”‘E(n)“‘cos 8. (3.7b) 

For deexcitation processes, the inequality E(n’+ 
l/2) 2.5 implies a maximum value 8,,, < ir/2, 
and the inequality E(n’- l/2) Q E implies a 
minimum value Bmin 2 0. More precisely, 

T(E(n’i l/2)) = T(E(n))-g’“‘E(n)“’ cos .9,, 

and 
(3.8a) 

T(E(n’- l/2)) = T(E(n))-g’“‘E(n)“” COS Bmin, 

with the restrictions 

n’<tl 

and 

(3.8b) 

(3.&z) 

0 =Z emin =Z e,,, =Z n/2 _ (3.8d) 

Eqs. (3.Sa)-(3.Sdj show that the ranges 

C&W &ml ad C-&l,, -emin] contribute to the 
histogram transition probability P,,,.. Since 
only one momentum direction enters (with the 
other leading to excitations), the integral in eq. 
(3.5) becomes 

P n_n. = N,’ 2E(n)“’ I sinB(y)-Id@. 

%Iin 

(3.9) 

This equation and eqs. (3Sa)-(3.Sd) provide the 
quantum number variation of P,,,. for deex- 
citation processes at the same initial kinetic 
energy. One simply utilizes a very restricted set 
of input P,,,,i to determine g’“’ which then 
generates all other P,,,‘. Some of these may be 
zero, i.e. classically forbidden, if g”’ is so small 
that fYrnLX = 0 = @min. 

The simplest input set is any single non-zero 
PI=‘-& since 9min = 0 when n’ = 0 as the final 
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energy cannot be less than E(-l/2) = 0; then 
only Lx needs to be found from eq_ (3.9) and 
this generates g”’ throug5 eq. (3.74 with n = A 
and E =E(1;2). X more complica’red input set is 
P *_.“-.I, P = 1,2, -.-, Z. where I is the largest 
value for which the probability is non-zero; then 
emin for P,_,_1 becomes &,, for P,,_,,-2 etc., 
and this suf5ces to determine the appropriate 
8 mnr and emi,,, which then yield g”‘. Combina- 
tions of these input sets are also feasible, but it 
is important to emphasize that the basic prob- 
iem is finding a set of consistent Bmin and em= 
values. By contrast, higher order scaling rela- 
tionships based upon g’“‘i(P)g’“+p~g”’ require 
more than one input probability to determine 

g “I, g”’ and g”‘. We will not pursue this 
fmther since the analysis oE energy transfer 
moments will be shown to provide more direct 
solutions for the higher order scaling theories. 

For the initial application of the scaling 
theory, we consider the harmonic oscillator- 
atom collision system. With all energies in ur~ts 
of 210, the necessary fonnuIas are 

u (rO) = $Tz-‘mw (rO --1;)‘, (3.1Oa) 

E(y)=y+t (:.lOb) 

and 

T(E(yN=E(y)/2, (3.104 

where r; is the potential minimum. Using eqs. 
(3.6) and (3.10), the integral in eq. (3.9) can be 
evaluated with the result 

p(Ho! = Z-l R-n (e*XK- emir.)7 (3.11) 

where orna and enin still satisfy eqs. (3.8) with 
eqs. (3.10b) and (3.101~) providing th- internal 
energies_ Clearly, input of PL?..’ at a single 
impact parameter and at a given kinetic energy 
determines 0,, which then determines g(O). If 
the transition probability P,_,_A is sufficiently 
small so that e,,i,=O, then eqs. (3.11) and (3.8a) 
yield the extremely simple scaling relationship, 

(nl f l/2)“’ cos (YiPr;._o;,_~) 
(HO) = (PII + l/2)“’ cos (iTP,,,,,_l j. (3.12) 

The transition probabilities for the coIIinear 
HI-(Bn) system [l-9] are shown in table 1. The 

Table 1 
Quasidassical histogram transition probabilities: scaling 
analysis for the collinear atom-harmonic oscillator system, 
(H&B+ =) 

Ek b, Transition QCH” Scaling Exact 
predicticn d’ quantum =’ 

1.5 1-o 
2-I 
3-2 
4-3 
5-l 

2.5 1-o 
2-1 
3-2 
4-3 
5-4 

3.5 1-O 
2-I 
3-2 
4-3 
53 

cf I’ 
1.07-I 
2.15-I 
1.76 - 1 
3.23 - 1 

9.23 - 2 
2.46- 1 
3.01-I 
3.38-I 
X53- 1 

2.00-1 
2.76 - I 
3.23 - 1 
3.53 - I 
3.69- 1 

cf 3.45-2 
(inpcr) a 6.51-2 
.X06- 1 9.56-2 
2.52-l 1.27-I 
2.80 - 1 _ !I, 

(input) 5.77-2 
2.3-t- 1 I.O9- 1 
2X4- 1 1.54- 1 
3.13-I - 
3.4s- 1 2.26- 1 

(input) 7.92-2 
2.5-t- 1 1.46- 1 
3.22- 1 
3.45 - 1 2.44- 1 
3.61- 1 3.05- 1 

a1 The system parameters for the dynamical calculations are 
_eiven in ref. [16]. 
‘) Kinetic energy in units of LJ in the iniiiaf state. 
” Quasiclassi~ histogram transition probabiiity generated 
from trajectory calc&tions utilizing 64 trajectories. 
d’ Scaling predictions based upon eqs. (3.9). (3.10b). (3.10~) 
and (3.1 I). The scaling solution reduces to eq. (3.12) for the 
A= 1 transitions. The scaling theory predicts that all quanta 
changes of more rhan one are classically forbidden for all the 
initial states and energies presented here; this agrees per- 
fectly with the dynamical calculations. 
=’ Exact qcantum result from ref. [19]. 
” Classically forbidden. 
s’ The QCH transition probability is used as input to the 
scaling. 
” Transition not reported in ref. [19]. 

single quanta deexcitation probabilities are 

sufficiently smal1 so that emin = 0 for dl initial 
states_ The scaling relationship in eq. (3.8) 
reduces to eq. (3.12) for A= I, whiIe the 
multiquanta transitions are predicted to be 
classically forbidden for all the kinetic energies 
and initial states in tabIe 1. The quantitative 
agreement for the P,_,_I is very good, and the 
predictions of ciassicalIy forbidden transitions 
are perfect. The latter feature is especially 
interesting since there is no a priori reason to 
believe that P,,,-l alone implies anything 
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i.bout P n_n_2 etc.; the classical scaling analysis 
provides the intimate relationship_ The exact 
quantal P,,“_, are shown in table 1 to illus- 
trate the different quantum number variation of 
quantum and quasiclassical histogram transition 
probabilities. Finally, we note that the quadratic 
expansion term of eq. (2.19), --Q(t)Z/[~O- 
u(rJJ”, was included in order to investigate the 
importance of such higher order contributions 
to the scaling; the resulting more complex scal- 
ing theory leads to the same results to five 
significant figures as those based upon eq. (3.8). 

The transition probabilities for the collinear 
Hz-He system [19] are shown in table 2. The 
results are not as quantitatively accurate as for 
the Brz-(Hz) system, and some differences 
between the first order and second order scaling 
theories do appear. However, all the qualitative 
trends are correctly described including the 
increase and then decrease of P,,,_l as n 

increases, the particular ciassically forbidden 
processes and especially the classically allowed 
Pd_= transition at Ek = 2.5. Closer inspection 
shows that the scaling results decrease in 
accuracy as the cohision energy increases and 
that the first order scaling is usually better than 
second order scaling. Both these features are 
related to the fact that the &-He system is 
non-perturbative but also non-sudden; in other 
words, the time-scales for the collision and the 
internal vibrational motion are comparable. 
Thus, a more complex scaling theory (see ref. 
[17] and the note added in proof) should be 
utilized, and the better accuracy of the first 
order solution for the simple scaling using only 
g”’ is not meaningful. LastIy, note the exact 
quanta1 values do not follow the same trend as 
the classical ones, but the difference between 
the magnitudes of the QCH and exact quanta1 
transition probabilities is smalier for this system 
than for the Brz-(Hz) system_ 

A more complex illustration involves the 
atom-Morse oscillator collision system defined, 
in units of ho, by the formulas 

u(r0) = D{l -exp [a(ro - rJ]}’ (3.13a) 
and 

E(y) = (y -i l/2) - (y + 1/2)‘/40, (3.13b) 

where rc is the potential minimum. The virial 
theorem in eq. (2.23b) is slightly more difficult 
to implement, but the result is still analytic; 

T(E(y)) =D[l -E(y)/D ]I” 

x{l-[l-E(y)/DJ”z}. (3.13c) 

Using eqs. (3.6) and (3.13) the integral in eq. 
(3.9) can be evaluated with the result 
p&IO) _ 3_-1 n+n. --_,, {arctan [(tan (&,/2) -(Y, )/Pn 1 

- aKtan [(tan (erniJ2) -an )/A IX (3.13a) 

where 

Q, = [E(n)/o]*” 

and 

(3.14b) 

~“=(l-*f)~~~=l-(n+1/2)/2D. (3-l&) 

Here, 6,, and emin satisfy eq. (3.8) with eqs. 
(3.13b) and (3.13~) providing the internal 
energies. 

The transition probabilities for the collinear 
He-Ha Morse oscillator system [19] are shown 
in table 3. The scaling predictions, using the 
Morse oscillator eqs. (3.13b) and (3.14), are 
generally accurate to better than 20% and pre- 
dict all the qualitative features correctly. In 
contrast, the approximate treatment of this 
system by the harmonic oscillator scaling eqs. 
(3.lOb) and (3.11) leads to considerably less 
accurate qualitative and quantitative results. 
This is an important point since it clearly 
implies that the Morse oscillator system does 
not simply correspond to the harmonic system 
with reduced transition probabilities. Further- 
more, even the approximation of the Morse 
oscillator vi&l result in eq. (3.13~) by the 
harmonic oscillator eq. (3.1Oc), retaining all 
other variables appropriate to the Morse 
system, leads to a worsening of the scaling pre- 
dictions; most evident are the predictions that 
P-1_3 is claz&ally allowed at Ek = 1.560 and 
that PSe3 is classically forbidden at EL = 3.560. 
This indicates that even the partitioning of 
internal energy between the kinetic and poten- 
tial energies strongly influences the dynamics. 
Finally, we should emphasize that as in the 
harmonic Hz-He system, the quantitative 
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Table 2 
Quasiclassical histogram irazsition probabilities: scaling analysis for the collinear atom-harmonic oscillator system, He-Hz”’ 

EL ‘) Transition QCH” Scaling predictions 

first orderd’ second order ‘) exact quantum” 

1.5 

2.5 

3.5 

1-O 
2-l 
2-O 
3-2 
3-l 
4-3 
4-2 
54 
5: 

1-O 
2-l 
2-o 
3-2 
3-l 
4-3 
1-2 
5-4 
5-3 

l-0 
2-l 
24 
3-2 
3-l 
3-3 
1-2 
5-t 
Z-3 

6”’ 
cf 
cf 
cf 
cf 
IAO- I 
cf 
2.31- 1 
cf 

cf 
cf 
cf 
cf 
cf 
(input) ” 
cf 
1.95- 1 
ci 

3.10-I 
3.90 - I 
cf 
4.40- 1 

cf 
3.23- 1 
l.38- 1 
2.50- 1 
2.x!-! 

(input) 
3.57- 1 
cf 
3x0- 1 
cf 
3.21-I 
7.30-Z 
2.48- 1 
l-.57- I 

3*90- 1 (input) 
3.10- 1 2.04- 1 
l.iO- 1 2.11-I 
2.15- 1 1.61-l 
3.0s - 1 2.68- 1 
1.70-l l.37- I 
2.30- 1 2.33 - 1 
1.38- 1 1.21 -I 
1.85~- 1 1.67- 1 

cf 
ef 
cf 
cf 
cf 
(input) 
cf 
1.95-l 
cf 

(input) 
x57- 1 
cf 
3.80-l 
cf 
2.51- 1 
I.?1 - 1 
2.10- 1 
1.95 - 1 

(inpilt) 
IAil- 1 
2.65 - 1 
1.21-l 
1.66- 1 
1.05- 1 
1.25- 1 
9.30- 1 
LO& 1 

2.95-2 
5.50-z 
2.cM-3 
7.70-2 
5.39-3 
9.60-Z 
9.55-3 
_ i, 

1.33-l 
2.17- 1 
2.25-2 
2.68 - 1 
5.24 - 2 

3.12- 1 
LOQ- 1 

2.91-l 
3.69- 1 
9.13-2 

3.04- 1 
x21- 1 

w-) See tabk 1. 
d’ Scaling prediaions based tipon eqs. (3.9). @lob), (3.10~) and (3.11). 
=) Scaling predictions including the quadratic term, [E(n) =E]~/S Ed” cos3 6. in eqs. (3.7) and (3.5). which follows from eq. 
(2.19j. ” Exxt qumtum result from ref. [19]. ” Classically forbidden. 
” I& QCH :ransirion probability is used zs inpEt to the scaling. ” Transition probability not reported in ref. [19]_ 

accuracy of the ~Morse scaling decreases at the 
higher energies due to the comparable time 
scale for the ccllisional and internal motion. 

4. Sumrnaq and conciusion 

The general results of this article pertain to 
the change in the classica intemaI molecular 
variables, p and r, during a collision. These can 
be summarized in two statements_ First, the 
internal momenttim transfer is a weak function 

of the initial internal momentum and coor- 
dinare. Second, and following from the first, the 
internal energy transfer is a known strong 
function of the initial internal energy and coor- 
dinate but only a weak function of the initial 
momentum. The preponderance of the 
development in section 2 was designed to show 
that these statements folIow from Hamilton’s 
equations when the time-scales for internal 
motion and collisional interactions differ 
substantially. In addition, these statements were 
cast into a simple mathematical formalism, 
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Table 3 
Quasicksical histoqraol transition probabilities: scaling analysis for the collinear atom-Morse oscillator system, He-HZ *’ 

Ek 
b, Transition QCH =’ Scaling predictions 

Morse d’ harmonic virialc’ harmonic” 

1.560 1-O cfg’ d cf cf 
2-1 cf cf cf cf 
3-2 cf cf cf cf 
4-3 cf cf 1.14- 1 1,4x- 1 

54 2.00 - 1 (input) !I’ (input) (input) 

2.560 1-O cf cf cf cf 
Z-I 1.3s- 1 (input) (input) (input) 
3-2 2.77- 1 2.92- 1 2.53 - 1 2.22 - 1 
4-3 3.51- 1 3.92- 1 3.x- 1 2.61- 1 
53 1.00-i 5.77- 1 3.71- 1 2.90 - 1 

3.560 l-o 1.69-l (input) (input) (input) 
2-l 3.23-l 3.35- 1 3.0s- 1 2.67 - 1 
3-2 3.69 - 1 4.2s- 1 3.81-I 3.09- 1 
4-3 1.00 - 1 5.01- 1 3.32- 1 3.31- 1 
1-2 cf cf f cf 
51 2.31-l 3.87- 1 i.73 - 1 3.51-I 
5-3 1.85-I 1.79- 1 cf cf 

N-C’ See table 1. 
” Scaling predictions based upon the full Morse scaling in eqs. (3.8), (3.13b). (3.13~) and (3.14). The Morse parameter D =9.3. 
=) Scaling predictions based upon replacement of the Morse vi& relationship eq. (3.13~) by the harmonic virial eq. (3.10~). All 
energies and the probability integral are given by the Morse eqs. (3.13b) and (3.13) respectively. 
” Scaling prediction bred upon replacing the Morse oscillator by a harmonic oscillator and using eqs. (3.8). (3_1!lb), (3.10~) 
and (3.11). ” Classically forbidden. h’ The QCH transition probability is used as input to the scaling. 

which to a good approximation characterizes the 
systematica of classical dynamics. 

A detailed illustration of the use of this 
formalism was presented for the commonly 
applied quasiclassical histogram technique. The 
resuIts for both Morse and harmonic oscillators 
showed that any single non-zero transition 
probability P,,,. contains essentially all 
information necessary to generate the entire 
remaining probabilities, at the same initial 
transIational kinetic energy. This predictive 
ability extended even to the determination of 
those transitions which were classically 
forbidden. 

That the systematics of classical trajectory 
calculations can be described by any scaling 
formalism is quite surprising. This is especially 
true because of the fact that there exist 
dynamically forbidden but energetically allowed 
transitions; hence, any analysis baaed upon dis- 

tribution functions which are constrained only 
by energetics must fail. Another difficulty 
involves the local nature of classical mechanics 
which implies that different regions in phase 
space can be sampled by different initial states. 
The results of this article clearly indicate that 
such difficulties are not insurmountable, and 
that even an extremely simple classical scaling 
theory accurately describes the classical 
dynamics of non-reactive collisions for systems 
with one internal degree of freedom. 

The scaling of quasiclassical histogram vibra- 
tional transition probabilities in section 3 can be 
utilized to reduce the effort in trajectory cal- 
culations. The combination of the ener,T scaling 
equation with other quasiclassical procedures 
can provide similar reductions. More interesting 
from a fundamental standpoint would be the 
investigation of the various quantum number 
scaling theories implied by the different 
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quantization procedures [3-S]; comparisons 
among the dif?erent t!!eories and to the known 
quanta1 scaling theory [12] (within its range of 
validity) may indicate a particular theory or 
extension thereof which most accurately 
describes the qualitative trends of quantum 
mechanical calculations. Extensions of the 
present energy scaling to systems with more 
than a single internal degree of freedom also 
need to be considered. Perhaps it is worthwhile 
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Note added in proof 

A general derivation cf classical scaling rela- 
tionships has been discovered based upon 
replacement of functional derivatives by 
ordinary derivatives. This work [17-J Iifts essen- 
tially all of the restrictions on the present scal- 
ing relationship except that reactive processes 
are still excluded. In addition, the more general 
relationship reduces to eq. (2.24) of the present 
article when the first total moment of the 
average kinetic energy change, i.e. (T- T.), is 
small. 
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