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The recently measured rates for the rotationally inelastic process (A ! ENaa (i) + Xe— (A 1 EwNaz (7)) ~ Xe are ana-
Iyzed and correlated with a scaling theory that explicitly accounts for the admabaticity of the collision. A brief discussion of
previous scaling thearies (which neglect this effect) is presented.

An a-priori scaling relationship between rotationally
inelastic rates [1--3] has been shown to allow the
extraction of state-to-state information from vibration—
rotation linewidth data f1]. It is the purpose of this
letter to show that such a scaling relationship has an
important additional application as a means of data
correlation, reduction anug prediction. This method of
data analysis has an extremely desirable property: the
collisional information is contained in a single column
of the physically measurable rate matrix.

Consider the case of rotational relaxation. The stan-
dard method of data compaction that has been em-
ployed by several investigators [4] involves the
fitting of the measured inelastic rates, &, ;- t0 a func-
tion of the so-called natural variables. In rotational re-
laxation, the transition energy is nearly always used,
and a common choice for the function is an exponen-
tial [4,5],

kl..-=kg»3exp(~6l€i* gl - )

Here ¢; denotes the energy of the ith state, k}}- isa
prior (statistical) rate, and the parameters B and 8 are
determined by yielding the best fit to a large amount
of data. Note that eq. (1) reduces all the unknown rates
to knowledge of just two parameters that have no
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simple or direct physical significance.

A general scaling relationship has recently been
developed for vibrationally and rotationally inelastic
processes and a detailed account will appear elsewhere
[6]. For rotational inelasticity in atom—linear mole-
cule collisions, the general expression relating kinetic
rates reduces to the simple form

=y P N2
k(D=0 21 L] (ggg) 14{1Pk,o(T), (2)

with the restriction €i> € . In the above expression
[} =21+1, () isa 34 symbol. and A*}J is an adiaba-
ticity factor, which is given in terms of an effective
collision length I, as

Al = [6 + e — eL..mc/zvmz}
Lo L6+ (e~ &) 200]2

3)
i

where v = (8kF/um)M? is the average projectile speed.
(For homonuclear molecules. L —1 and j — 1 are re-
placed by £ — 2 and j — 2 respectively.) Note that the
restriction of eq. (2) to downward transitions does not
limit its applicability since upward transition rates are
related to these by detailed balance.

An understanding of the adiabaticity factor in egs.
(2) and (3) is especially important for the proper ana-
lysis of experimental data. Physically, A specifically
accounts for the finite collision time, 7. =/_/u. For
appropriate kinetic energies in systems with a small
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collisional reduced mass andfor cases having closely
spaced energy levels (e.g., He—COQ), Ai is nearly unity
and thus can be safely neglected. In the limit that
—1’ = 1 and as (g — & }/kT 0, eq. (2) reduces to the
mnmte order sudden (10S) scaling formula of Goldflam
et al. [3]. For cases with larger reduced mass (such as
Na3—Xe which is considered later) or at sufficiently
high f, the adiabaticity factor plays a crucial role in
determining the variation of the rates kj;_ , withj for
fixed A_ In this regard, note that all of the variables
except I, in eq. (3) are exaplicitly given in terms of
static properties of the collision system such as the
mass and energy level spacing. Since the physical inter-
pretation of [ is defined in terms of the average impact
parameter for inelastic collisions, it is often easy to
adequately estimate 7. For rotational transitions in
neutral atom—molecule collisions, a crude value for
{. can be taken as the hard sphere radius. In many
apphutmm of eq. (2) — such as when k; g are known
and the other rates are predicted — the estimated [,
is quite adequate and yields good results [6]. Whg.n
accurate eaperimental data is available (especially as
a function of initial rotor level), /. no longer need be
totally estimated but can be determined more precisely
by comparison to the data. We emphasize that /_ still
must be pivsically reasonable and is thus not a purely
adjustable parameter. In essence, the analysis of experi-
mental measurements can yield both the specific dyna-
mical rates, & g. and an improved range for the effec-
tive collision length, /.. With this information available,
the rates kif for all fand § can be generated from (2).
The relationship in eq. {2) is a specific illustration
of a general scaling formula for non-reactive collisions
which is fully discussed elsewhere [6]. For this special
atom-—linear molecule case. two other scaling theories
2.3} are available. First. as discussed above. the 10S
formula sets .-iL =1 and (ef ~ €#)kT =0 and thusis
a direct Iimiting form of eq. (2). Second. the dynamic
coupling theory [2] (DCT) relationship includes the
encryy level spacing as in eq. (2) but sets A/, =1 and
makes an additional assumption about the form of the
potential matrix elements. It is not a direct Himit of
<q. (2) but the DCT scaling expression can be easily
modified to incorporate the adisbaticity. The result is

ey = W —F] ;\'(kT)
G =" vGT+ G- 1)

7o(T) @
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Xt ok
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for € > ¢ and where N(E) is the number of rotor
levels accessible at total energy E. There is a difference
between eqgs. (2) and (4) in that DCT relates each rate
ky only to ky;_s o, while the relationship in eq. (2)
includes all higher order effects as well.

As an example of the utility and power of this data
analysis procedure, consider the collision system
(A 1=,)Na3—Xe, in which rotational rates have been
experimentally determined [7,8] for 6 initial states and
a variety of final states at 7" = 450 K. We choose as
input the set k;+3¢ 7~ = 18, 20..48, which are derived
from k1 by detailed balance. Then, if we adopt the
relationship embodied in eq. (2), the rates &7 are ob-
tained as the solution to the linear equations

=16 16 L\2 .
rie(T) = 1161 Z) [L]((’, 00) lA}_l?‘kmU;):)
)

A multistep procedure is used to solve eq. (5): start
with k;gg. truncate the sum over L to only the lowest
term and solve for k51 next include kg 16 and kg 4.
truncate the sum over L to the two lowest terms and solve
for koq and kg repeat this procedure up till k45 1¢.-
The systematic inclusion of the higherj rates in eq.
(5) enables one to deternune the convergence of the
rates k; . Following this procedure we feund that the
rates k7 o up to L = 24 were converged out of the set
k3y, - kgqq using input up to k4516 (The higher

rates were unconverged but decreasing rapidly in mag-
nitude and thus are relatively unimportant for all & ¥i
with 17" — j1 < 24.) Note that eq. (5) can be solved for
ko with any value of /.. One method for calculating
f. would do a least squares fitting to the data. We have
not used this technique but have determined I by com-
parison of the scaling predicted and experimental
values of k¢ 74- This was sufficient for the analysis

of the present data. We also mention that with the mo-
dified DCT scaling relationship, a simpler analysis is
possible: the k 10 S are obtained by setting j '=16in
eq. (4).

The above procedure using eq. (5) yields the converged
rates shown in table I and I_= 7 bohr. A more precise
value for /_ is not warranted by the accuracy of the
experimental rates, k- jg and k4g 73- For instance, we
note that the values of &, o using I_ = 5(8.5) bohr are
almost identical to those in table 1. and that the pre-
dicted value of k4¢ ¢4 is only slightly too large (smali).
As expected. « moderate variation of I does not signifi-



Volume 61, number 3

Table 1
Rate constants from the deconvolution of experimental data

on Na3--Xe collisions®

L fiio "20
2 0.7891+0.0363 0.5479+0.0123
4 0.23250.0280 0.1650=0.0060
6 0.0937£0.0237 0.0811x0.0046
8 0.0802x0.0210 0.0558+0.00335
10 0.0541=0.0190 0.0376=0.0030
12 0.035120.0175 0 0269x0.0025
14 0.0367:0.0162 0.0219=0 0021
16 0 0222=0.0150 0.0158+0.0018
i8 0.0245=0.0140 0.0136=0.0018
20 0.0222=0.0130 0.0107:0.0016
22 0.0192:0 0121 0.0081+0.0014
244 0.01250.0112 0.0058+0.0014

3) The rates ko obtained from the scaling relationship of eq.
(5)2 and the modified DCTDP both using I = 7 bohr are
presented here. The temperature 1s 450 K, and the units of
the rates are 10710 cm3 s~!. The stated uncertainties are
due solely to esperimental error. Note that the rates in
column a using eq. (3) are converged with respect to adding
higher input rates & 16-

cantly effect the scaling theoretical analysis. However,
the neglecr of A} (ie., I, =0) as in the I0S scaling re-
lationship, will yield rates in upper j levels that are
significantly too large. In the analogous DCT proce-
dure the value [ = 7 bohr also reproduced the data
accurately. The resulting rates are shown in table 1.
An interesting point is that the matrix of rates k,»
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with/ 5 0, 3= 0 predicted by either eq. (2) with &
from the first column of table 1 or by eq. {4) and the
k;g’s from the second column are in very good agree-
ment. However, the differences between ko and kg
derived from the two methods serve to stress the
difference in the models as discussed above. We have
used a gaussian form for the experimental input rate
error to determine the uncertainties in the deconvoluted
rates. The non-overlapping of some of the error bars in
columns I and Il is due to the complete neglect of any
model errors. In fact, both scaling relationships are
unlikely to be consistently more accurate than £10%

— to judge from previous work [2,6]. As a consequence.
the two columns are actually in reasonably good agree-
ment, especially concerning the propensity for multiple
quantum transitions.

Due to the easy generalization of eq. (2) to more
complicated systems [6], the following discussion 15
based upon the results using this equation. Sinnlar com-
ments would hold for the results of eq. (4). Using the
Ky ¢ rates and /.. any individual rate kjf. ncluding those
not experimentally measured can be caleulated via eq.
(2). These are depicted in fig. 1 for sample cases, along
with the measured rates. It can be seen that the agree-
ment between the predicted and measured rates is ex-
cellent. Sinular agreement is found for all the rates in
ref: [ 7]. Since the values of k5y;+ with 47 = 1 would
be nearly equal to &4 j*» it is clear that the adiabaticity
factor is quite important in this heavy system and that
the analysis based upon eq. (2) is capable of correlating
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Fig. 1. Scaling predicted and experimental rates: The rates K16 3.4 (9) are used to determine the &7 4 1n eq. (5). The scaling predicted
rates ksq 1-'(A) and k4 ;-4 (®) agree with the corresponding experimental values ksay'(¥) and k6 1g-a(—) within the experimental

uncertainty.
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and compacting the data, and predicting the rates. Thus,
a purely parametrical fitting of the experimental results
is unnecessary 1. We mention that the adiabaticity fac-
tor should be less important for the Na3—He system
and consequently the rates in the upper levels should
not decrease as rapidly as those in Na3—Xe collisions.
An experimental verification of this prediction would
be interesting.

The Na3—Xe example illustrates the value of the
present procedure as a means of data-compaction,
since only the & rates and I, are needed to obtain
all other rates. At the same time, such a relationship
must not be viewed simply as fitting procedure, since
the rates &; o and effective collision length I_ have
explicit dynarnical meaning, and they are obtained by
the deconvolution. In this regard, the predictive and
non-adjustable nature of eq. (2) allows an in-depth
analysis of relaxation effects. In addition, an unsuccess-
ful attempt at a deconvolution would imply that un-
usual dynamical effects are occurring, and thus would

This point is important for tize interpretation of the data.
For instance, it has recently been concluded that a propen-
sity for mj = my exists in the Na¥—Xe system [7,9]. Since
eq. (2) includes all reorientations, the piesent analysis shows
this conclusion to be an artifact of the assumed functional
form and the chosen prior. This is an inherent weakness of
any parametrization procedure. Explicitly, the basic dyna-
mical quantities £y o can be fitted equally well by either

of the formskyo =B[L(L+1)] or ko = (B [IL]) [LL+D)]S.
Since the first function assumes a statistical prior, and the
second assumes no reorientation, no unambiguous informa-

tion about reorientations can be obtained with either of the
above forms.
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point out a system for further study 7. By contrast,
a poor fit to the data by an arbitrarily assumed func-
tional form merely warrants a different functional
form — no more and no less.
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1 See, for example, the deconvolution of linewidth data for
near-homonuclear molecules as presented in ref. [1].
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